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Geometric approach to Lyapunov analysis in Hamiltonian dynamics
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~Received 3 April 2001; revised manuscript received 6 August 2001; published 27 November 2001!

As is widely recognized in Lyapunov analysis, linearized Hamilton’s equations of motion have two marginal
directions for which the Lyapunov exponents vanish. Those directions are the tangent one to a Hamiltonian
flow and the gradient one of the Hamiltonian function. To separate out these two directions and to apply
Lyapunov analysis effectively in directions for which Lyapunov exponents are not trivial, a geometric method
is proposed for natural Hamiltonian systems, in particular. In this geometric method, Hamiltonian flows of a
natural Hamiltonian system are regarded as geodesic flows on the cotangent bundle of a Riemannian manifold
with a suitable metric. Stability/instability of the geodesic flows is then analyzed by linearized equations of
motion that are related to the Jacobi equations on the Riemannian manifold. On some geometric settings on the
cotangent bundle, it is shown that along a geodesic flow in question, there exist Lyapunov vectors such that two
of them are in the two marginal directions and the others orthogonal to the marginal directions. It is also
pointed out that Lyapunov vectors with such properties cannot be obtained in general by the usual method that
uses linearized Hamilton’s equations of motion. Furthermore, it is observed from numerical calculation for a
model system that Lyapunov exponents calculated in both methods, geometric and usual, coincide with each
other, independently of the choice of the methods.
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I. INTRODUCTION
Natural Hamiltonian systems with many degrees of fr

dom have Hamiltonian functions of the form

H~q,p!5
1

2 (
i , j

N

d i j pipj1V~q!. ~1!

In spite of the simple appearance, those Hamiltonian fu
tions having appropriately chosen potential functions
used in a wide variety of physical sciences such as pla
physics, condensed matter physics, and celestial mecha
However, the potential functions describe nonlinear inter
tions, in general, so that chaotic or highly unstable trajec
ries take place in respective phase spaces, as is widely
ognized. The exponential instability of trajectories a
measured in terms of Lyapunov exponents, which desc
time-averaged properties of chaotic trajectories. Further
the study of directional deviations of chaotic trajectorie
Lyapunov vectors will be of great use.

The Lyapunov exponents and the Lyapunov vectors
defined through linearized Hamilton’s equations of motio
For the Hamiltonian~1!, the linearized equations take th
form

dQi

dt
5Pi ,

dPi

dt
52(

j 51

N
]2V

]qi]qj
@q~ t !#Qj , i 51, . . . ,N,

~2!

where X5(Q1, . . . ,QN,P1 , . . . ,PN) is a 2N-dimensional
vector representing a deviation from a reference trajec
„q(t),p(t)… to a nearby trajectory. The linearized Eqs.~2!
have 2N linearly independent solutions, which we denote
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Xa(t), a51, . . . ,2N. The Lyapunov vectorsVa(t) are then
obtained by orthogonalizing these solutions on the Gra
Schmidt method

Va~ t !5Xa~ t !2 (
b51

a21
^Xa~ t !,Vb~ t !&

^Vb~ t !,Vb~ t !&
Vb~ t !, a51, . . . ,2N,

~3!

where^X,V& denotes the inner product ofX andV. Theath
Lyapunov exponentla is calculated as

la5 lim
t→`

1

t
ln

iVa~ t !i
iVa~0!i . ~4!

It is to be noted that the values of the Lyapunov expone
are known to be independent of the choice of initial values
the Lyapunov vectors except for vanishing Lebesgue m
sure @1,2#, and that the exponents are ordered asl1>l2
>•••>l2N .

Since the Lyapunov exponents are time-averaged qua
ties, they are suitable for the study of statistic properties
Hamiltonian systems. For example, phase transitions are
vestigated by the use of Lyapunov exponents. In fact,
second-order phase transition@3# and the Kosterlitz-Thouless
transition @4# are characterized by the discontinuity in th
largest Lyapunov exponents and by a sudden change in
gradient of the largest Lyapunov exponent against ene
respectively. Further, the sum of all positive Lyapunov exp
nents, which is also viewed as a function of energy, is use
the discussion of a dynamical phase transition@5#, according
to which trajectory’s phase transition from nearly integrab
behavior to chaotic behavior occurs in an energy region
which the sum of positive exponents breaks into a rapid
crease against energy. In contrast with this,
©2001 The American Physical Society06-1
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Lyapunov vectors are expected to be useful in studying
namical behavior of chaotic trajectories, since they serve
time series@6,7#.

Suppose that a reference trajectory is given in a ph
space. Then, according to Eq.~3!, one can form 2N linearly
independent Lyapunov vectors from solutions to the line
ized equations of motion along the reference trajecto
However, two of the Lyapunov vectors that are associa
with Lyapunov exponentslN and lN11 are considered a
marginal, sincelN and lN11 should vanish, as is widely
recognized. One of those two Lyapunov vectors is the t
gent vector to the trajectoryXH and the other the gradien
vector of Hamiltonian function, gradH. We may interpret
these vectors as follows: The displacement in the direc
XH is regarded just as a certain time displacement in
reference trajectory, and the displacement in the direc
gradH will give rise to a transfer to a nearby trajectory wi
an energy value different from that of the reference traj
tory. In view of this, in order to analyze the instability o
trajectories, we are allowed to require that the two directio
pointed by the vectorsXH and gradH be separated out from
the other 2N22 directions. Put another way, the requireme
means that a Lyapunov vector that is orthogonal to the pl
spanned byXH and gradH at an initial instant has to be
orthogonal to the plane spanned byXH and gradH at every
instant. If the requirement is fulfilled, we will be able t
discuss the instability of trajectories without influence of t
two marginal directions.

Unfortunately, the usual method of Lyapunov analysis
the basis of Eqs.~2! does not satisfy the requirement in ge
eral. This is because for any solutionX(t) to Eq.~2! one has

d

dt
^X,gradH&50, ~5!

so that one obtainŝ X,gradH&50 at any instant if
^X,gradH&u t5050 at an initial instant, but, in general, by n
means can one makêX,XH& vanish at any instant, so tha
even the first Lyapunov vectorV1 cannot be made orthogo
nal to the plane spanned byXH and gradH at every instant.

A way to construct Lyapunov vectors that satisfy t
above-stated requirement is to adopt linearized equation
a different type from the usual one~2!. To take a geometric
approach to Hamilton’s equations of motion is a step tow
finding such Lyapunov vectors. As for the geometric a
proach, it is known that if the total energy of the natu
dynamical system is fixed atE, Newton’s equations of mo
tion may be equivalently expressed as geodesic equation
a Riemannian manifold (M ,gi j ), whereM is a subspace o
the configuration spaceRN defined by M5$qPRNuE
2V(q).0% and gi j is the Jacobi metric defined bygi j (q)
52@E2V(q)#d i j . Then the linearized equations of the ge
desic equations are given by the Jacobi equations of the f

d2Xi

ds2
1 (

j ,k,l 51

N

Rjkl
iXj

dqk

ds

dql

ds
50, i 51, . . . ,N, ~6!

where Rjkl
i are the components of the Riemann curvat

tensor, ands is the arc length defined as
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ds25 (
i , j 51

N

gi j ~q!dqidqj5 (
i , j 51

N

gi j ~q!
dqi

dt

dqj

dt
dt2. ~7!

On the other hand, the linearized Newton’s equations are
in the form

d2Qi

dt2
1(

j 51

N
]2V

]qi]qj
Qj50, i 51, . . . ,N. ~8!

Equations~6! and ~8! are not transformed to each oth
through the parameter transformation~7!, while Newton’s
equations of motion and geodesic equations for the Ja
metric are transformed to each other. This geometric met
has been introduced in the estimation of the larg
Lyapunov exponentl1 with the aid of statistical mechanic
@8–11#. They studied instability of geodesics through the J
cobi equation, a second-order differential equation, while
Lyapunov analysis needs first-order differential equations

The geometric approach we will take in this paper is to
made on the cotangent bundleT* M of the Riemannian
manifold M in order to find first-order differential equation
associated with Eq.~6! and thereby to construct Lyapuno
vectors that satisfy the above-stated requirements. We
first work with generic linearized Hamilton’s equations
motion onT* M , and then specialize the resultant equatio
to linearized Hamilton’s equations for geodesic flows
T* M , which will be found to project to the Jacobi equatio
on M. Further, we will introduce a lifted metric on the co
tangent bundleT* M to make it possible to discuss the o
thogonality of vector fields onT* M . The lifted metric may
be called the Sasaki metric. On this setting, we will be a
to find Lyapunov vectors satisfying the above-stated requ
ments along any geodesic flow onT* M . Put in detail, it will
be shown that along any geodesic flow onT* M , there exist
Lyapunov vectors such that those associated with the van
ing Lyapunov exponentslN and lN11 are XH and gradH,
respectively, and the other 2N22 Lyapunov vectors are al
orthogonal to the plane spanned byXH and gradH at each
point of the geodesic flow.

This article is organized as follows: Section II contains
brief review of geodesics and Jacobi fields and, in particu
of the Jacobi metric, whose geodesics are equivalent to
jectories of the natural dynamical system with a fixed to
energy. In Sec. II and succeeding sections, Einstein’s s
mation convention is adopted, and we choose to denote
(xi) local coordinates on a generalm-dimensional Riemann-
ian manifold, and by (qi) the Cartesian coordinates onRN.
Section III is concerned with geodesic flows on the cotang
bundleT* M , which project to geodesics onM. To describe
geodesic flows in a more geometric way, we introduce
adapted frame and a lifted Riemannian metric onT* M . Lin-
earized Hamilton’s equations of motion are discussed in S
IV, and it will be shown that there exist Lyapunov vecto
that satisfy the above-stated requirement along a geod
flow on T* M . Section V is for numerical calculations for
model system with three degrees of freedom. Lyapunov v
tors and Lyapunov exponents are calculated numerically
the model system in both geometric and usual method
6-2



a
oi
th
d

tt
lar

d
n

e
ua

To
o

e
a

-
ni-

on,

ann

or

n

n-
s of

s
Ja-
w-

uit-

-
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compare the respective results. It will be shown th
Lyapunov exponents calculated in respective methods c
cide with each other, independently of the choice of me
ods. Section VI is devoted to concluding remarks. Appen
ces are attached in which related topics on geometry
cotangent bundles and a symplectic implicit Runge-Ku
method for numerical integration are reviewed. In particu
lifting vector fields onM to T* M and the Levi-Civita con-
nection with respect to the lifted metric onT* M are dis-
cussed.

II. GEODESICS AND JACOBI FIELDS

A. Jacobi equations

Let (M ,g) be an m-dimensional Riemannian manifol
with metricg. The metric induces the Levi-Civita connectio
¹ on M; for vector fieldsY, ZPX̄(M ), X̄(M ) denoting the
set of vector fields onM, the covariant derivative¹YZ is
defined, in terms of local coordinates (x1, . . . ,xm), to be

¹YZ5YjF ]Zi

]xj
1G jk

i ZkG ]

]xi
,

where (Yi) and (Zi) are components ofY and Z, respec-
tively, the Christoffel symbolsG jk

i are defined as

G jk
i 5

1

2
gi l S ]gl k

]xj
1

]gj l

]xk
2

]gjk

]xl D
with components of the metric

gi j 5gS ]

]xi
,

]

]xj D , gi j g
jk5d i

k .

For a geodesicc(s) with s the arc length parameter, th
tangent vectorj to the geodesic satisfies the geodesic eq
tion

¹jj5Fdj i

ds
1G jk

i j jjkG ]

]xi
uc(s)50, ~9!

where

j5
dxi

ds

]

]xi U
c(s)

with

ds25gi j dxidxj . ~10!

We are interested in stability/instability of geodesics.
this end, we consider a congruence of geodesics that lo
like a fluid whose flow lines are geodesics with thec(s) as a
member of them. Then we may consider that the tang
vectorj to c(s) is extended to be a vector field defined in
neighborhood of the original geodesicc(s). We may also
assume that there exists a vector fieldY satisfying the con-
dition
06620
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@j,Y#50 ~11!

in the same domain as that forj. The condition~11! means
that a geodesic withj its tangent vector is carried congru
ently to another infinitesimally nearby geodesic by the infi
tesimal transformationY. Thus,Y is viewed as a deviation
of geodesics. The vector fieldj may have singularity at
which j is not defined uniquely, andY may vanish there.
With this in mind, we operate¹jj50 with ¹Y and use the
definition of the Riemann curvature tensor and of the torsi
which vanishes identically, to obtain the Jacobi equation

¹j¹jY1R~Y,j!j50. ~12!

Here, as is well known, the torsion tensor and the Riem
curvature tensor are defined, respectively, to be

T~Y,Z!5¹YZ2¹ZY2@Y,Z#,

R~Y,Z!W5¹Y¹ZW2¹Z¹YW2¹ [Y,Z]W,

where Y,Z,WPX̄(M ), and the Riemann curvature tens
has symmetries such as

g~R~Y,Z!W,U!52g~R~Z,Y!W,U!52g~R~Y,Z!U,W!

5g~R~W,U!Y,Z!, ~13!

whereY,Z,W,UPX̄(M ). Local components of the Rieman
curvature tensor are expressed as

Ri jk l 5Ri jk
mgml 5gS RS ]

]xi
,

]

]xj D ]

]xk
,

]

]xl D ,

Ri jk
l 5

]G jk
l

]xi
2

]G ik
l

]xj
1G im

l G jk
m2G jm

l G ik
m .

In the next section, we will give an example of Rieman
ian metrics whose geodesics are equivalent to trajectorie
Newton’s equations of motion

d2qi

dt2
1

]V

]qi
50, i 51, . . . ,N. ~14!

Then, in order to analyze stability/instability of trajectorie
of the natural Hamiltonian system, we can deal with the
cobi equation, a linearization of the geodesic equation. Ho
ever, the Jacobi equations in their original form are not s
able to Lyapunov analysis.

B. Geodesics for the Jacobi metric

Consider equations of motion, Eq.~14!, on RN, which we
call a natural dynamical system. LetMJ be an open submani
fold of the configuration spaceRN, which is defined to be

MJ5$qPRNuV~q!,E%. ~15!
6-3
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As is well known, if energy is fixed atE, almost all trajec-
tories are confined inMJ whenN>2. On the other hand, th
Jacobi metricgJ is defined, inMJ , to be

~gJ! i j 52@E2V~q!#d i j . ~16!

According to Maupertuis’s Principle of Least Action, an e
tremal of the action, the integral of the kinetic energy alo
possible paths, provides an actual trajectory of total-ene
E. This principle can also be stated as follows: An extrem
of the variational problem of lengths of paths with respec
the Jacobi metric provides an actual trajectory of the to
energyE @12,13#. From Eq.~10! along with the Jacobi metric
gJ , the arc length parameters is shown to be related to th
time parametert by

ds254@E2V~q!#2dt2, ~17!

and the tangent vector to a geodesic is always unity acc
ingly

gJ~j,j!5gi j j
ij j52~E2V!d i j

dqi

ds

dqj

ds
5@2~E2V!#2S dt

dsD
2

51.

Since the Christoffel symbols for the Jacobi metric~16!
are given by

G jk
i 5

21

2~E2V! F ]V

]qj
dk

i 1
]V

]qk
d j

i 2
]V

]qi
d jkG , ~18!

the geodesic equations for the Jacobi metric are express

d2qi

ds2
2

1

E2V

]V

]qj

dqj

ds

dqi

ds
1

1

4~E2V!2

]V

]qi
50,

which prove to be equivalent to Newton’s equations of m
tion ~14! on account of Eq.~17!. However, the Jacobi Eqs
~6! with the curvature tensor for the Jacobi metric are
brought into the same equations as Eq.~8!, a linearization of
Newton’s equations of motion, in general. Components
the curvature tensor forgJ are indeed put in the form@11,13#

Ri jk l 5Ci l d jk1Cjkd i l 2Cikd j l 2Cj l d ik ,

where

Ci j 5
]2V

]qi]qj
1

3

2~E2V!

]V

]qi

]V

]qj

2
1

4~E2V!
dkl

]V

]qk

]V

]ql
d i j .

III. GEODESIC FLOWS ON COTANGENT BUNDLES

In the previous section, we have mentioned that trajec
ries of a natural dynamical system with a fixed energy m
be regarded as geodesics on a suitable Riemannian man
and that stability/instability of the trajectories are analyz
06620
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through the Jacobi equation, a linearization of the geode
equation. However, the Jacobi equation is a second-o
differential equation, while Lyapunov analysis is applied
first-order differential equations. We hence need a first-or
differential equation associated with the Jacobi equation
order to apply Lyapunov analysis. To find such a first-ord
differential equation, we are working on the cotange
bundleT* M of a Riemannian manifoldM along with some
geometric setting ups onT* M . Related topics onT* M will
be described in Appendix A.

At first, let us be reminded of a minimum on cotange
bundles. LetM be anm-dimensional Riemannian manifol
endowed with Riemannian metricg5gi j dxi

^ dxj , andT* M
the cotangent bundle ofM with the projectionp:T* M→M .
Let (xi) and (xi ,pi) be local coordinates in an open subs
U,M and in p21(U), respectively. Further, let (x̄i ,p̄i) be
another local coordinates in p21(Ū) with
p21(U)ùp21(Ū)ÞB. Then one has the coordinate tran
formation in the intersectionp21(U)ùp21(Ū),

x̄i5 x̄i~x!, p̄i5
]xj

] x̄i
pj . ~19!

A. Geodesic flows

We recall that Newton’s equations of motion have be
already ‘‘geometrized’’ so as to be geodesic equations o
suitable Riemannian manifold, so that further external fo
does not need to be taken into account anymore. In o
words, we have only to consider a free particle motion onM.
In the Hamiltonian formalism, the Hamiltonian we then ha
to study should be given, onT* M , by

K5
1

2
gi j ~x!pipj , ~20!

where (gi j )ª(gi j )
21. Hamilton’s equations of motion forK

are then put in the form

dxi

ds
5

]K

]pi
5gi j pj ,

~21!

dpi

ds
52

]K

]xi
5gk jG j i

l pkpl ,

where use has been made of the equality

2
]gkl

]xi
5gk jG j i

l 1gj l G j i
k .

It is an easy matter to show that Eq.~21! projects to geodesic
equation onM. In fact, put together, differentiation of th
first equation of Eq.~21! with respect tos and the second
equation of Eq.~21! along with the above equality provid
geodesic equations. As is well known, Eq.~21! is associated
with the Hamiltonian vector fieldXK given by
6-4
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XK5
]K

]pi

]

]xi
2

]K

]xi

]

]pi
5gi j pj

]

]xi
1gk jG j i

l pkpl

]

]pi
.

~22!

Integral curves of Eq.~22! are called geodesic flows. W
note here that the nomenclature ‘‘geodesic flows’’ are u
ally assigned to the corresponding flows on the tang
bundle, but we use the word for convenience’s sake.

It is worth noting here that how geodesic flows onT* M
project to geodesics onM. Let P(s)5(x(s),p(s)) be a geo-
desic flow with an initial value„x(0),p(0)…5(a,b) with
gi j bibj51. Define a tangent vectorv to M at a5p„P(0)…
by v i5gi j bj . Then the projectionx(s)5p„P(s)… is a geo-
desic with the initial value„x(0),ẋ(0)…5(a,v). Varying b
PTa* M with gi j bibj51 but fixing a, we obtain an
(m21)-parameter family of geodesic flows onT* M , which
projects to an (m21)-parameter family of geodesics passi
the pointa of M. Furthermore, the vector fieldXK projects to
the tangent vector fieldj to this family of geodesicsM.
However,j has singularity only ataPM in a neighborhood
of a. We have to note that if all geodesic flows onT* M
project to geodesicsM, those geodesics may not define su
a tangent vector field uniquely. If there is anoth
(m21)-parameter family of geodesic flows onT* M , it may
project to another (m21)-parameter family of geodesics o
M along with a tangent vector field likej.

B. Adapted frames

To describe geodesic flows in a more geometric way,
introduce an adapted frame and an adapted coframe
p21(U),T* M by the use of the Christoffel symbolsG jk

i on
M. The adapted frame and coframe are defined, inp21(U),
to be

Di5
]

]xi
1pkG i j

k ]

]pj
, Dī 5

]

]pi
, ~23!

and

u i5dxi , u ī 5dpi2pkG i j
k dxj , ~24!

respectively, whereī 5 i 1m. These frames are dual to eac
other, i.e., they satisfy

u i~D j !5d j
i , u i~D j̄ !50, u ī ~D j !50, u ī ~D j̄ !5d i

j .

If there is another adapted frame$D̄ i ,D̄ ī % in an open set
p21(Ū) and if the intersectionp21(Ū)ùp21(U) is non-
empty, then from Eq.~19! it follows that the adapted frame
are subject to the transformation

D̄ i5
]xj

] x̄i
D j , D̄ ī 5

] x̄i

]xj
D j̄ . ~25!

For adapted coframes, an analogous transformation hold
well.
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The transformation~25! implies that Di , i 51, . . . ,m,
and Dī , ī 5m11, . . . ,2m, define, respectively, subspace
HP and VP of the tangent spaceTPT* M at each pointP
PT* M independently of the choice of adapted frames. Th
one obtains a direct sum decomposition of the tangent sp
to T* M at each pointPPT* M ,

TPT* M5HP% VP . ~26!

The subspacesHP andVP are called the horizontal and th
vertical subspace ofTPT* M , respectively. We notice her
that HP and Tp(P)M are isomorphic as vector spaces. No
further that the transformation rule for the standard fra
$]/]xi ,]/]pi% is mixed up, so that one cannot define a su
space, say, span$]/]xi% independently of the choice of natu
ral frames. See@14# for adapted frames on the tangent bund
TM.

In terms of the adapted frame, the Hamiltonian vec
field XK becomes expressed as

XK5Dī ~K !Di2Di~K !Dī 5gi j pjDi , ~27!

which shows thatXK is a horizontal vector field and furthe
that geodesic flows are horizontal curves in the sense tha
tangent vectors to them are always horizontal.

C. The Sasaki metric

As is already seen, the tangent space toT* M at each
point of T* M is decomposed into a direct sum. We m
define a metric onT* M so that the decomposition may b
orthogonal direct sum. One of such metrics is the Sas
metric, which is a lifted metricg̃ given by

g̃5gi j u
i
^ u j1gi j u ī

^ u j̄ . ~28!

This metric is defined independently of the choice of adap
coframes. We notice here that the Sasaki metric was in
duced on the tangent bundleTM @15#, but we use the same
nomenclature on the cotangent bundleT* M as well.

By using the Sasaki metric, the arc length onT* M is
defined as

ds25gi j dxidxj1gi j ~dpi2pkG in
k dxn!~dpj2pl G jh

l dxh!.

It then turns out that geodesic flows onT* M take the same
arc length as the corresponding geodesics onM have, since
one has ds25gi j dxidxj5ds2 for horizontal curves, and
since geodesic flows are horizontal. Hence, the parames
used in Hamilton’s Eq.~21! may be interpreted as the ar
length onM, so that the geodesicx(s)5p„P(s)… on M is
described in the arc length parameter.

We will adopt the Sasaki metric onT* M to discuss or-
thogonality of Lyapunov vectors onT* M in the next section.

IV. LYAPUNOV ANALYSIS OF GEODESIC FLOWS

On the basis of the geometric setting up, we are to fin
first-order differential equation associated with the Jac
equation, and thereby discuss Lyapunov vectors.
6-5
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A. Linearization of Hamilton’s equations of motion

For a general Hamiltonian functionH, linearized Hamil-
ton’s equations of motion are put, as is well known, in t
form

dX̂i

ds
5

]2H

]pi]xj
X̂j1

]2H

]pi]pj
X̂ j̄ ,

dX̂ ī

ds
52

]2H

]xi]xj
X̂j2

]2H

]xi]pj

X̂ j̄ ,

whereX5X̂i] i1X̂ ī ] ī stands for a deviation of Hamiltonia
flows, where] i5]/]xi and] ī 5]/]pi . These equations ma
be obtained from the condition@X,XH#50 as well, where
XH is the Hamiltonian vector field,

XH5
]H

]pi

]

]xi
2

]H

]xi

]

]pi
.

In fact, the condition@X,XH#50 restricted to a prescribe
Hamiltonian flowP(s)5(x(s),p(s)) provides

@X,XH#uP(s)5S ]2H

]pi]xj
X̂j1

]2H

]pi]pj
X̂ j̄ D ]

]xi UP(s)

2S ]2H

]xi]xj
X̂j1

]2H

]xi]pj

X̂ j̄ D ]

]pi
U

P(s)

2
dX̂i

ds

]

]xi U
P(s)

2
dX̂ ī

ds

]

]pi
U

P(s)

,

where we have used the formula

dX̂i

ds
5

]H

]pk

]X̂i

]xk
2

]H

]xk

]X̂i

]pk
5XH~X̂i !,

and a similar formula for dX̂ ī /ds. It is to be noted here tha
the condition@X,XH#50 implies that a Hamiltonian flow, an
integral curve ofXH , is dragged to another infinitesimall
nearby Hamiltonian flow by the infinitesimal transformatio
X, i.e., X is a deviation of Hamiltonian flows. With this in
mind, we may obtain linearized equations with respect to
adapted frame, if we calculate@X,XH#50 with X and XH
expressed as

X5XiDi1Xī D ī ,

XH5Dī ~H !Di2Di~H !Dī ,

respectively, and restrict the resultant equation to a p
scribed flowP(s). We note here that the components (Xi ,Xī )
with respect to the adapted frame transform according to

Xi5
]xi

] x̄ j
X̄ j , Xī 5

] x̄ j

]xi
X̄ j̄ . ~29!
06620
e

e-

A long but straightforward calculation of@X,XH#uP(s)50
then provides linearized Hamilton’s equations of motion
follows:

dXi

ds
5F ]2H

]pi]xj
1

]2H

]pi]pl

pkG l j
k GXj1

]2H

]pi]pj
Xj̄ ,

dXī

ds
52F ]2H

]xi]xj
1

]2H

]xi]pl

pkG j l
k 1S ]2H

]pl ]xj

1
]2H

]pl ]pm
pnGm j

n D pkG i l
k 2

]H

]xk
G i j

k 1pk

]G i j
k

]xm

]H

]pm
GXj

2F ]2H

]xi]pj

1
]2H

]pl ]pj
pkG i l

k GXj̄ , ~30!

where use has been made of the formula

dXi

ds
5D j̄ ~H !D j~Xi !2D j~H !D j̄ ~Xi !5XH~Xi !,

and of a similar formula for dXī /ds.
In what follows, we take the Hamiltonian given by E

~20!. The equation of deviation~30! then takes the form

dXi

ds
52G jk

i gkl pl Xj1gi j Xj̄ ,

~31!
dXī

ds
52Rjkl ig

knpngl hphXj1G ik
j gkl pl Xj̄ .

The right-hand side of Eq.~31! must be evaluated along
geodesic flowP(s)5„x(s),p(s)…. Since one hasgi j pj (s)
5dxi /ds5:j i(s) along the geodesic flow, Eq.~31! can be
brought into the form

dXi

ds
52G jk

i jkXj1gi j Xj̄ ,

dXī

ds
52Rjkl ij

kj l Xj1G ik
j jkXj̄ . ~32!

We can show that this system of equations is the first-or
differential equation that project to the Jacobi equation, a
hence, may be called the lifted Jacobi equation. The pr
runs as follows: On account of Eq.~29!, the quantities
„Xi(s)… and „Xī (s)… may be viewed as a tangent and a c
tangent vector toM along the geodesicx(s), so that the first
equation of Eq.~32!, rewritten as

dXi

ds
1G jk

i jkXj5gi j Xj̄ ,

implies that„gi j Xj̄ (s)… is equal to the covariant derivative o
„Xi(s)… along the geodesicx(s). The second equation of Eq
~32! then implies that
6-6
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dYi

ds
1G jk

i jkYj52Rjkl
ijkj l Xj with Yi5gi j Xj̄ .

The above two equations are put together to yield the Ja
equation forYX5„Xi(s)…,

¹j¹jYX52R~YX ,j!j,

where¹j stands for the covariant derivation along the ge
desicx(s).

B. Lyapunov vectors

Here, we show that solutions to Eq.~32! satisfy the re-
quirement stated in the Introduction in the Hamiltonian s
tem with the HamiltonianK given in Eq. ~20!. As for the
gradient ofK, we note that the differential dK and the gra-
dient of K, gradK, are put in the form

dK5gikpku
ī , gradK5piD ī ,

respectively, where the gradient of a functionF on
T* M , gradF, is defined through

g̃~gradF,X!5dF~X!

for any vector fieldXPX̄(T* M ).
It is an easy matter to verify that Eq.~32! is satisfied by

XK , the tangent vector to a Hamiltonian flowP(s) or a
geodesic flow inT* M . In fact, the tangent vectorXK to P(s)
is given Eq. ~27!, and has the components,Xi(s)
5gi l pl (s), Xī (s)50, satisfying Eq.~32!. While the gradi-
ent vector along the Hamiltonian flowP(s), which is de-
noted by gradK(s) for simplicity, is not a solution to the
linearized Eq.~32!, the vector gradK(s)1sXK(s)5pi(s)Dī
1s gikpk(s)Di is a solution to Eq.~32!, as is easily verified.
Taking this into account, we wish to decompose the tang
spaceTP(s)T* M to T* M at every pointP(s) of a geodesic
flow into the direct sum of the plane spanned by bothXK(s)
and gradK(s) and the subspace transversal to the plane.
us define subspacesNP(s) andEP(s) to be

NP(s)5$XPTP(s)T* M uX5a XK~s!1b gradK~s!,

a, bPR%,

EP(s)5$XPTP(s)T* M ug̃~X,XK~s!!50,

g̃~X,gradK~s!!50%, ~33!

respectively, whereEP(s) is the orthogonal complement o
NP(s) with respect to the Sasaki metricg̃. Thus, we have the
orthogonal direct sum decomposition,

TP(s)T* M5Np(s) % EP(s) . ~34!

We wish to show that these subspaces are invariant u
any solution to the linearized equation~32!. To this end, we
have to verify,
06620
bi

-

-

nt

et

er

Theorem. A solution X(s) to the linearized Eq.~32!
which is in NP(0) ~resp. in EP(0)) at an initial moments
50 keeps belonging toNP(s) ~resp. toEP(s)) at any instants.

The proof of this statement is carried out as follows:
we have already shown,XK(s) and gradK(s)1s XK(s)
are solutions to Eq.~32!, so that the linear combination
of them, a XK(s)1b„gradK(s)1s XK(s)…5(a1bs)XK(s)
1b gradK(s), is also inNP(s) at any instants, which proves
the invariance ofNP(s) under the linearized flowX(s). To
prove the invariance ofEP(s) , we consider the temporal evo
lution of g̃(X,XK) with X a solution to Eq.~32!. We are to
show that

d

ds
g̃~X,XK!5dK~X!,

~35!
d2

ds2
g̃~X,XK!50.

We can carry out the proof of these equations in the man
of mechanics as follows: Note thatg̃(X,XK)5u(X), whereu
is the standard one form onT* M , i.e., u5pidxi in local
coordinates. Then differentiation ofu(X) with respect tos
results in

d

ds
u~X!5LXK

„u~X!…5~LXK
u!~X!1u~@XK ,X# !

5@di~XK!u1i~XK!du#~X!5@d„u~XK!…2dK#~X!

5dK~X!,

where use has been made of~i! the definition of the Lie
derivative of one forms,~ii ! the condition@X,XK#50, ~iii !
the Cartan’s formula for the Lie derivation,~iv! i(XK)du
52dK, and ~v! the equalityu(XK)52K due to the homo-
geneity ofK in pi . Thus, we obtain the former equation o
Eq. ~35!. Differentiating the former equation of Eq.~35! with
respect tos using the equation

d

ds
dK~X!5

d

ds
g̃~gradK,X!50,

a similar equation to Eq.~5!, we obtain the latter of Eq.~35!.
Now, Eq. ~35! is integrated to give

g̃~X,XK!uP(s)5g̃~X,XK!uP(0)1s dK~X!uP(0) .

Since dK(X)5g̃(X,gradK), the above equation implies tha
X(s)PEP(s) if X(0)PEP(0) . This ends the proof of the in
variance ofEP(s) under the linearized flowX(s). j

On the basis of the decomposition~34!, we can construct
a set of Lyapunov vectors$Va%, a51, . . . ,2m, satisfying the
requirement mentioned in Sec. I. We are thinking of t
Riemannian manifold (MJ ,gJ) introduced in Sec. II B, and
hence,m5N. The firstN21 linearly independent solutions
$Xa(s)%, a51, . . . ,N21, to the lifted Jacobi Eq.~32! are
chosen inEP(s) , which are orthogonalized to give firstN
21 Lyapunov vectors$V1 , . . . ,VN21%. The Nth and (N
6-7
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TABLE I. Comparison between the usual method and the geometric method. TheN-dimensional manifold

MJ is defined in Eq.~15!, andg̃E is the Euclidean metric. Note thatT* MJ5MJ3RN.

Configuration Phase Linearized
Method space space Metric Hamiltonian equation

Usual MJ MJ3RN
g̃E

H @Eq. ~1!# Eq. ~2!

Geometric MJ T* MJ g̃J
K @Eq. ~20!# Eq. ~32!
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11)-th Lyapunov vectors are chosen inNP(s) so as to be
VN(s)5XK(s) and VN11(s)5gradK(s), respectively. This
is because they are mutual orthogonal and becauseXK(s)
and gradK(s)1s XK(s) are solutions to the linearized equ
tion and further orthogonal to the firstN21 Lyapunov vec-
tors. Note in addition that any solutionX(s) staying inNP(s)
becomes asymptotically parallel toXK(s) as s→`, so that
XK(s) is assigned to theNth Lyapunov vector and gradH(s)
to the (N11)-th Lyapunov vector, respectively. The remai
ing N21 Lyapunov vectors are chosen inEP(s) , which are
orthogonal toXK and gradK as well as to the firstN21
Lyapunov vectors by the very definition. Consequently, fro
solutions to Eq.~32! with the initial values chosen so as
satisfy

(a) XN(0)5XK(0), XN11(0)5gradK(0),
(b) Xa(0)'$XK(s), gradK(0)%, a51, . . . , N21,N

12, . . . , 2N,
at the initial moments50, we may obtain expectedly a s
of Lyapunov vectors such that

(i) VN(s)5XK(s), VN11(s)5gradK(s),
(ii) Va(s)'$XK(s), gradK(s)%, a51, . . . ,N21,N

12, . . . ,2N.
From the property~i!, we may observe that the Lyapuno

exponentslN andlN11 vanish indeed. In fact, since

g̃~XK ,XK!5g̃~gradK,gradK !52K

is constant along any geodesic flow, one haslN5lN1150
from the formula~4!.

V. NUMERICAL CALCULATIONS FOR COMPARISON

In this section, we are to compare the geometric met
and the usual method through a model system with th
degrees of freedom, by numerically calculating Lyapun
exponents and Lyapunov vectors in respective methods.
will find that the Lyapunov exponents calculated in resp
tive methods coincide with each other, independently of
choice of methods, while the Lyapunov vectors calculated
respective setting ups exhibit different behaviors to e
other, depending on the method chosen.

A. Comparison of setting ups in respective methods
For a natural Hamiltonian system withN degrees of free-

dom, setting ups for Lyapunov analysis both in the geome
method and in the usual method are summarized in Tab
We note here that the metricg̃E introduced on the phas
spaceMJ3RN in the usual method is, of course, the Eucli
ean metric defined, as usual, to be
06620
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g̃E5d i j dqi
^ dqj1d i j dpi ^ dpj .

As was pointed out in Sec. II B, the geodesic equatio
for the Jacobi metric are equivalent to Newton’s equations
motion for a natural dynamical system with energyE. We
now verify this fact in the Hamiltonian formalism. Th
Hamiltonian vector fieldsXK andXH , which are defined on
the same phase space in respective manners, are given

XK5gi j pjDi , XH5d i j S pj

]

]qi
2

]V

]qj

]

]pi
D , ~36!

respectively, wheregi j 5d i j /@2(E2V)#. A straightforward
calculation along with Eq.~18! and 1

2 ( i pi
21V5E then pro-

vides

XK5
1

2~E2V!
XH , ~37!

which implies that Hamiltonian flows both in the geometr
method and in the usual method coincide within the cha
of parameters, ds/dt52„E2V(q)…. Thus, along the same
flow ~up to the parameter change!, we may compare numeri
cally tangent vectors such as solutions to linearized eq
tions of motion and Lyapunov vectors. In the followin
X(g)(s) andX(t) denote solutions to the linearized equatio
of motion in the geometric method and in the usual meth
respectively.

B. Orthogonal relations in the usual method

In Sec. IV, we have shown that Lyapunov vectors in t
geometric method may be chosen so that two of them ma
the tangent vectors to the Hamiltonian flow in question a
the gradient vector of the Hamiltonian function along t
flow, and the others be orthogonal to those two vectors
this section, we remark that such orthogonal relations ho
for part of Lyapunov vectors even in the usual method,
which the Euclidean metricg̃E is adopted inMJ3RN.

Let X1(t), . . . ,X2N(t) be linearly independent solution
to Eq.~2!, for which the initial conditions are taken in such
manner that

~a! XN(0)5XH(0), XN11(0)5gradH(0),
~b! Xa(0)'$XH(0), gradH(0)%,
a51, . . . ,N21,N12, . . . ,2N,

whereXH and gradH are the Hamiltonian vector field forH
and the gradient vector field ofH, respectively. Let
V1(t), . . . ,V2N(t) be Lyapunov vectors formed from
Xa(t),a51, . . . ,2N. Then the following two properties hold
true:
6-8
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~i! V1(t), . . . ,VN(t) are always orthogonal to gradH(t),
~ii ! VN11(t), . . . ,V2N(t) are always orthogonal toXH(t).
The property~i! is easily shown to hold from Eq.~5!. In

fact, solutionsX1(t), . . . ,XN(t) to the linearized Eqs.~2! are
always orthogonal to gradH(t), if they are initially orthogo-
nal to gradH(0). Hence, the Lyapunov vector
V1(t), . . . ,VN(t) are always orthogonal to gradH(t), since
theN-dimensional space spanned byV1(t), . . . ,VN(t) is the
same as that spanned byX1(t), . . . ,XN(t). For the proof of
the property~ii !, we use the fact that the Hamiltonian vect
field XH(t) is a solution to the linearized Hamilton’s Eq.~2!,
so that one hasXN(t)5XH(t). Then, XH(t) is in the
N-dimensional space spanned byX1(t), . . . ,XN(t), and
hence, in that spanned byV1(t), . . . ,VN(t). By definition,
the Lyapunov vectorsVN11(t), . . . ,V2N(t) are orthogonal
to V1(t), . . . ,VN(t), and hence, toXH(t).

The above two properties will be confirmed, as well,
numerical calculations for a model system in a later sect
Moreover, by numerical calculations in the usual method,
will observe thatVN12(t), . . . ,V2N(t) are not always or-
thogonal to gradH(t), and thatV1(t), . . . ,VN21(t) are not
always orthogonal toXH(t), either. We recall here that, in
the geometric method, Lyapunov vecto
VN12

(g) (s), . . . ,V2N
(g)(s) are always orthogonal to gradK(s),

and that V1
(g)(s), . . . ,VN21

(g) (s) are always orthogonal to
XK(s), which will be confirmed, as well, by numerical ca
culations for the model system. Here, byVa

(g) and Va , we
denote the Lyapunov vectors that are obtained in the geo
ric method and in the usual method, respectively, to tell
difference between them.

C. Initial conditions

To compare numerical computation results calcula
both in the geometric method and in the usual method,
have to set both Hamilton’s equations of motion and line
ized equations of motion to share the same initial conditio
Hence, in particular, we come to require that the initial co
ditions for linearized equations of motion are taken to
subject to the conditions~a! and~b! mentioned in Sec. V B in
the usual method as well as in the geometric method. In
section, we discuss how one may set such initial conditio
in spite of the difference between metrics used.

We take a number of initial values, P(0)
5„qj (0),pj (0)…, for Hamiltonian flows onT* MJ in such a
manner that gradV vanishes at the initial pointP(0), where
gradV is defined with respect to both the Euclidean met
and the Jacobi metric on the configuration spaceMJ , but the
equation gradV50 defines the same points, independently
the metric chosen. Since the phase spaces in both met
are in common, and since Hamiltonian flows in both me
ods are also in common up to the change of parameters
will obtain a number of Hamiltonian flows in common aft
integration. We also have to note that the condition graV
50 at the initial point implies that the Christoffel symbo
G jk

i ’s defined by Eq.~18! vanish also there, so that the Jaco
metric is put, at the initial point, in the form

g̃JuP(0)52W0d i j dxi
^ dxj1~2W0!21d i j dpi ^ dpj , ~38!
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whereW05E2V„P(0)….
Let Xa

(g) and Xa denote solutions to linearized Eqs.~32!
and ~2!, respectively.

According to the procedure stated in Sec. IV, initial co
ditions for linearized Eqs.~32! in the geometric method ar
set as follows:

~a! XN
(g)(0)5XK(0), XN11

(g) (0)5gradK(0),
~b! Xa

(g)(0)PEP(0)ùHP(0) , a51, . . . ,N21, Xb
(g)(0)

PEP(0)ùVP(0) , b5N12, . . . ,2N.
See Eqs. ~26! and ~33! for the definitions of

HP(s) , VP(s) , andEP(s) .
Initial conditions for the linearized Eqs.~2! in the usual

method are set as

Xa~0!5Xa
(g)~0!, a51, . . . ,2N.

We here have to verify that these initial vectorsXa(0),a
51, . . . ,2N, are indeed subject to the initial conditions~a!
and~b! stated in Sec. V B. The verification of this is carrie
out as follows: By definition, one hasXN(0)5XK(0), and
further XK(0)5XH(0)/@2„E2V@q(0)#…# from Eq. ~37!, so
that XN(0)5XH(0)/@2„E2V@q(0)#…#. The constant factor
2„E2V@q(0)#… causes no serious problem, since we are
terested in orthogonal relations between initial vecto
Moreover, it is an easy matter to see thatXN11(0)
5gradK(0)5gradH(0) on account of the assumptio
gradV(0)50 at the initial point, where we note that gradK

and gradH are taken with respect to metrics,g̃J and g̃E ,
respectively. To verify that the other initial vector
Xa(0),a51, . . . ,N21,N12, . . . ,2N, are orthogonal to
XH(0) and to gradH(0), we use thefollowing four facts:

~i! X1(0), . . . ,XN21(0)PEP(0)ùHP(0) ,
~ii ! XN12(0), . . . ,X2N(0)PEP(0)ùVP(0) ,
~iii ! HP(0) and VP(0) are orthogonal with respect to th

Euclidean metric, as is seen from Eq.~38!,
~iv! restricted to the subspacesHP(0) and VP(0) , the Ja-

cobi metric and the Euclidean metric are conformal to ea
other,

g̃JuP(0)~X1 ,X2!52~E2V!g̃EuP(0)~X1 ,X2!,

X1 ,X2PHP(0) ,

g̃JuP(0)~X1 ,X2!5g̃EuP(0)~X1 ,X2!/@2~E2V!#,

X1 ,X2PVP(0) .

It then turns out from~i! and ~iv! that X1(0), . . . ,XN21(0)
are also orthogonal toXN(0) with respect tog̃EuP(0) , and
further from ~ii ! and ~iii ! that they are also orthogonal t
XN11(0) with respect tog̃EuP(0) . A similar statement for
XN12(0), . . . ,X2N(0) holds true.

D. A model system

The model system we are to consider here is a nat
Hamiltonian system with three degrees of freedom that
interactions of He´non-Heiles type,
6-9
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H~q,p!5(
i 51

3 F1

2
pi

21VHH~qi ,qi 11!G ,
~39!

VHH~x,y!5x2y2
1

3
y3,

whereq45q1. Hamiltonian vector fields both in the geome
ric method and in the usual method, denoted byXK andXH ,
respectively, are given by Eq.~36! with gi j 5d i j /@2(E2V)#
andV5( i 51

3 VHH(qi ,qi 11).
Hamiltonian flows ofXH for the Hamiltonian~39! are

numerically calculated by the use of the fourth-order sy
plectic integrator @16#, which is a numerical integration
method on the basis of discrete time evolution with each s
an explicit symplectic mapping. Initial conditions for Hami
ton’s equations of motion are set asqi(0)50 and pi(0)
5ag i ( i 51,2,3), whereg i ’s are random values obtaine
from the uniform distribution function on the interval@0,1#,
and the constanta is determined so as to satisfy the ener
condition ( i 51

3 @pi(0)#2/25E. For the initial valuesqi(0)
50, we verify easily that the condition gradV(0)50 is sat-
isfied, which was assumed in the previous Sec. V C. To
tegrate the linearized Hamilton’s equations of motion~2!, we
take an alternative method, that is, we choose to linear
along a certain Hamiltonian flow, the sequence of symple
mappings already obtained on the symplectic integrator
gorithm. To our knowledge of explicit symplectic integrato
the symplectic integrator used here and another symple
algorithm proposed in@17# are set up on the assumption th
Hamiltonians are of the formH(q,p)5T(p)1V(q), so that
those algorithms are not applicable to the numerical integ
tion of Hamilton’s equations of motion with Hamiltonians o
the form K(q,p)5( i 51

3 pi
2/@4@E2V(q)##. This means that

we have to take another algorithm to integrate Hamilto
equations of motion in our geometric method for Lyapun
analysis. What we use in this article is an implicit but sy
plectic sixth-order Runge-Kutta method~Kuntzmann and
Butcher method@18#, see Appendix B!. However, we have to
note here that we do not need to apply that Runge-K
method to integrate numerically Hamilton’s equations of m
tion for K, since the solutions to Eq.~21! coincide with
Hamiltonian flows already obtained by the explicit symple
tic integrator up to the parameter change. We apply the
plicit Runge-Kutta method to the numerical integration
the lifted Jacobi Eqs.~32!, the linearized Hamilton’s equa
tions of motion for K. The implicit Runge-Kutta method
however, requires an additional process of numerical com
tation. In fact, we need to calculate the inverse of aN
36N matrix at each step of the integration, whereN denotes
the degrees of freedom. For this reason, the CPU time
have needed to integrate the lifted Jacobi equations by
implicit Runge-Kutta algorithm is about 26 times as long
the CPU time we have needed to integrate the lineari
Hamilton’s equations of motion forH by the explicit sym-
plectic integrator. We have set the unit time slice as wide
h52.531026 both for the explicit symplectic integrator an
the Runge-Kutta algorithm.
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E. Results of numerical calculations
Figure 1 shows that Lyapunov exponents calculated

both methods have indeed definite values forE50.04, where
La’s andLa

(g)’s are defined, respectively, to be

La
(g)~ t !5

1

t
ln

iVa~s~ t !!i
iVa~0!i , La~ t !5

1

t
ln

iVa~ t !i
iVa~0!i ,

a51,2,3,

which are supposed to be convergent to Lyapunov ex
nents; limt→`La(t)5la and limt→`La

(g)(t)5la
(g) . Here, the

quantities with the superscript~g! are those used in the geo
metric method. However, to compare the numerical resu
we have madeLa

(g)(s) into a function oft by means of the
parameter change. It is to be noted here thatL3

(g)(s) always
vanishes on account of the fact thatiX3

(g)i5iXKi52K
5constant. ForE50.01, 0.02, and 0.03, we have obtain
also definite Lyapunov exponents, which are shown in Fig
along with the dependence on energy. Figure 2 also sh
that the Lyapunov exponents,la andla

(g) , calculated in both
methods coincide with each other, which means that
Lyapunov exponents are obtained independently of
choice of methods, geometric or usual.

We remark here that if one uses the Jacobi Eqs.~6!, a
second-order differential equation, to calculate the expon
tial growth rates of trajectories, one may obtain the sa
value as that obtained in the usual method. For example
the Fermi-Pasta-Ulamb model, the largest Lyapunov expo
nent is calculated by using a 2N-dimensional vector
(Xi ,dXi /dt) @19#, where@Xi(t)# is a solution to the Jacob
Eqs. ~6! and the Euclidean metric is used for th
2N-dimensional vector. According to@19#, the resultant
value of the exponent coincides with the largest Lyapun
exponent obtained in the usual method. This might sugg
that to calculate the largest Lyapunov exponent, one does
need to work with the cotangent spaces. However, the
vantage of the geometric method developed in this articl
that after the geometric method, we may obtain all t

FIG. 1. Convergence of Lyapunov exponents withE50.04.
Curves represent graphs ofLa

(g) and La (a51,2,3), whereLa
(g)

andLa , functions in the time parameter, are obtained by the g
metric method and by the usual method, respectively.
6-10
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Lyapunov exponents along with the Lyapunov vecto
among which two vectors associated with the vanish
Lyapunov exponents may be separated out from the oth
This may be observed in Figs. 3 and 4.

From Figs. 3 and 4, we will observe that the Lyapun
vectors calculated numerically in the geometric method
isfy the requirements stated in Sec. I and that the Lyapu
vectors calculated in the usual method have the prop
shown in Sec. V B.

FIG. 2. Comparison of Lyapunov exponents obtained by b
the geometric method and the usual method. Byla

(g) and la , we
denote Lyapunov exponents obtained by the geometric method
by the usual method, respectively. Numerical results obtaine
both methods are in good agreement.
06620
s
g
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Figure 3 provides temporal evolutions of inner produ
between normalized Lyapunov vectors and the normali
tangent vector to a Hamiltonian flow. The inner produc
both in the geometric method and in the usual method
denoted byta

(g) and byta , respectively,

ta
(g)5g̃JS Va

(g)

iVa
(g)i

,XKD , ta5g̃ES Va

iVai ,
XH

iXHi D .

Figure 3 shows that all the Lyapunov vectors except forV3
(g)

in the geometric method are orthogonal toXK , and that the
normalizedV3

(g) is equal toXK . On the other hand, we ob
serve also from Fig. 3 thatV1 andV2 in the usual method are
not always orthogonal toXH , and that the normalizedV3
does not equalXH /iXHi , either. In particular, we remark
that t2 takes values around unity in opposition to our requi
ment.

Figure 4 provides temporal evolutions of inner produ
between normalized Lyapunov vectors and the normali
gradient vector of the Hamiltonian, and the inner produ
both in the geometric method and in the usual method
denoted by the symbolna

(g) andna , respectively,

na
(g)5g̃JS Va

(g)

iVa
(g)i

,gradK D , na5g̃ES Va

iVai ,
gradH

igradHi D .

All the Lyapunov vectors except forV4
(g) are observed to be

orthogonal to gradK, andV4
(g) to be collinear to gradK in the

geometric method, as is expected. On the other hand,

h

nd
in
r-

s

e
n
,

s
l

d

e
t

FIG. 3. Temporal evolutions
of inner products between the no
malized tangent vector of a
Hamiltonian flow and normalized
Lyapunov vectors. The energy i
set atE50.04. In~a!, ~b!, and~c!,
straight lines are graphs ofta

(g)

against the time parameter in th
geometric method, and broke
curves are from the usual method
providing the graphs ofta . The
first and second Lyapunov vector
V1

(g) ,V2
(g) are always orthogona

to the tangent direction to a
Hamiltonian flowXK in the geo-
metric method, butV1 ,V2 are not
always orthogonal toXH in the
usual method. Moreover, the thir
Lyapunov vector always points to
the direction ofXK in the geomet-
ric method, but does not point to
the direction ofXH in the usual
method. In~d!, ~e!, and ~f!, only
straight lines are drawn, which ar
graphs from both methods, bu
they coincide with each other.
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FIG. 4. Temporal evolutions
of inner products between the no
malized gradient vector of the
Hamiltonian function and the nor
malized Lyapunov vectors. The
energy is set atE50.04. In ~d!,
~e!, and ~f!, straight lines are
graphs ofna

(g) against the time pa-
rameter in the geometric method
and broken curves are from th
usual method, providing the grap
of na . The 4th Lyapunov vector
V4

(g) always points to the gradien
direction of the Hamiltonian func-
tion K, but V4 does not always
point to gradH in the usual
method. Moreover, the 5th an
6th Lyapunov vectorsV5

(g) ,V6
(g)

are always orthogonal to gradK in
the geometric method, andV5 ,V6

are not so to gradH in the usual
method. In ~a!, ~b!, and ~c!,
straight lines from the two meth
ods are drawn, but each of them
looks like a single line because o
coincidence.
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Lyapunov vectorsV5 ,V6 in the usual method are not alway
orthogonal to gradH, andV4 does not point to the direction
of gradH, either. In particular,n5 in the usual method is fa
from vanishing, taking values around minus unity.

These observations agree to what we expect from
theory described in Secs. IV B and V B. We note in conc
sion that tiny fluctuations around straight lines in Figs. 3 a
4, in particular, Figs. 3~b! and 4~e!, seem to be numerica
errors due to the factor 1/@2(E2V)# included in the metric
gi j , Christoffel symbolG jk

i , and the Riemann curvature ten
sor Ri jkl .

VI. CONCLUDING REMARKS

In this paper, we have developed a geometric metho
Lyapunov analysis for natural Hamiltonian systems withN
degrees of freedom, which is set up on the cotangent bu
of a Riemannian manifold endowed with the Jacobi met
In contrast with our geometric method, the old or alread
known geometric method is established on the Riemann
manifold with the Jacobi metric. According to that metho
one brings Newton’s equations of motion for a natural d
namical system into geodesic equations for the Jacobi m
and uses Jacobi equations, linearized geodesic equation
analyze orbital instability of trajectories. However, the Jac
equations are second-order differential equations, w
Lyapunov exponents and vectors are defined through fi
order differential equations. We then need a first-order
ferential equation to apply Lyapunov analysis. According
our method, the Jacobi equations are lifted from Riemann
06620
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manifolds to their cotangent bundles to take the form of fir
order differential equations.

When the geometric method is applied, a question ar
as to whether Lyapunov exponents remain unchanged
their values or not, in comparison with those obtained in
usual method. As we have already pointed out, the lineari
equations in both methods are different from each other
cannot be transformed to each other through the param
transformation ds52@E2V(q)#dt, while the equations of
motion in both methods are transformed to each ot
through the same parameter transformation. However,
numerical computation has shown that the values
Lyapunov exponents coincide with each other, independe
of the choice of methods applied, as far as the model sys
with three degrees of freedom is taken. We guess that
Lyapunov exponents are long-term averaged values, so
they are independent of the choice of Lyapunov vect
along trajectories, while Lyapunov vectors depend on
choice of methods. As for the parameters of trajectories
both methods, we assume that the change of parameters
be subject to the condition 0,ds/dt,` along trajectories.
On this account, we expect that Lyapunov exponents
independent of the choice of methods for calculation. W
will find indeed the coincidence of Lyapunov exponents
both methods from numerical computations for other mo
systems. Further, observations made from the Lyapunov
ponents are expected to be independent of the choic
methods. For instance, a characteristics of the graph
Lyapunov spectral i against i /N, i 51, . . . ,N @20,21#,
which are observed in the usual method for a wide class
6-12
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Hamiltonian systems having nearest-neighbor interactio
will be found, in the geometric method as well, to be t
same as that observed already in the usual method. We
our geometric method may afford a fresh insight into t
observation through Lyapunov vectors.

In our geometric method developed in this paper, we m
choose Lyapunov vectors so as to satisfy the following
quirements:~i! Lyapunov vectors except forNth and (N
11)-th vectors are always orthogonal to both the tang
direction to a trajectory and the gradient direction of t
Hamiltonian function,~ii ! Nth Lyapunov vector points to the
tangent direction of the trajectory,XK , and ~iii ! (N11)-th
Lyapunov vector points to the gradient direction of t
Hamiltonian function, gradK. Along with such Lyapunov
vectors, we may analyze orbital instability of Hamiltonia
flows in phase spaces without influence of the two marg
directions pointed byXK and gradK that have vanishing
Lyapunov exponents,lN5lN1150. Moreover, theNth and
the (N11)-th local Lyapunov exponents, which are averag
of exponential growth rate in finite time, vanish on any tim
interval. The local Lyapunov exponents in the usual meth
are used, for instance, to distinguish nearly integrable s
tems from the others@22#.

In this paper, we have considered the Hamiltonian fu
tion of the formH(q,p)5 1

2 ( i j d
i j pipj1V(q) and developed

the geometric method in Lyapunov analysis. However,
geometric method may be established for Hamiltonian fu
tions of the form H(q,p)5 1

2 ( i j a
i j (q)pipj1V(q), where

@ai j (q)# is the inverse of a metric tensor@ai j (q)#. In this
case, the Jacobi metric is defined to begi j (q)52@E
2V(q)#ai j (q), and geodesic equations for this metric

d2qi

ds2
1G jk

i dqj

ds

dqk

ds
50

prove to be equivalent to Newton’s equations of motion

d2qi

dt2
1 H i

jkJ dqj

dt

dqk

dt
52ai j

]V

]qj
,

with the total energy fixed atE, whereG jk
i and $ jk

i % are the
Christoffel symbols formed from the metricgi j andai j , re-
spectively, ands is the length parameter for the Jacobi met
gi j , which is related to the parametert by ds/dt52@E
2V(q)#. The geometric method we have developed in
Lyapunov analysis of linearized Hamilton’s equations of m
tion on the cotangent bundle is independent of the choic
the Riemannian metric chosen, so that the theorem state
Sec. IV B holds also true in this case. Hence, we may fi
Lyapunov vectors that satisfy the requirements mentio
frequently.
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APPENDIX A: GEOMETRY OF COTANGENT BUNDLES

Vector fields and Levi-Civita connection on a Riemanni
manifold M are lifted to the cotangent bundleT* M , and
thereby the relation between geodesics onM and geodesic
flows onT* M will be made clear in geometric fashion.

1. Lift of vector fields on M

The cotangent bundleT* M is endowed with the standar
one-form u, which is expressed locally asu5pidxi . Note
that theu is defined globally onT* M . This may be seen
from the coordinate transformation on the nonempty int
section ~19!. The exterior derivative ofu, vªdu, is the
standard symplectic form onT* M .

For vector fields onM, a way to lift them is not unique. A
canonical way is given as follows: ForYPX̄(M ), the lifted
vector fieldỸ is defined through the conditions

p* Ỹ5Y, LỸu50, ~A1!

wherep* is the differential of the canonical projectionp,
and L denotes the Lie derivation. ForY5Yi] i , a straight-
forward calculation shows that theỸ is put in the form

Ỹ5Yi
]

]xi
2pj

]Yj

]xi

]

]pi
. ~A2!

Furthermore, owing to Cartan’s formula,LỸu5d@i(Ỹ)u#

1i(Ỹ)du, along withi(Ỹ)u5u(Ỹ), the latter of the condi-
tions ~A1! implies that 2d@u(Ỹ)#5i(Ỹ)v, which then
shows that theỸ becomes the Hamiltonian vector field ass
ciated withFªu(Ỹ)5piY

i . Thus, one has

Ỹ5XF5
]F

]pi

]

]xi
2

]F

]xi

]

]pi
. ~A3!

With respect to the adapted frame, the canonical liftỸ takes
the form

Ỹ5YiDi2pj¹ iY
jD ī , ~A4!

where

¹ iY
j5

]Yj

]xi
1G ik

j Yk.

In addition to the canonical lift, one may define anoth
lift; for a vector fieldY5Yi] i on M, the horizontal lift ofY
is given onT* M by

Ỹh5YiDi . ~A5!
6-13
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From the transformation rule~25!, the horizontal lift is
shown to be defined independently of the choice of adap
frames.

A curvex(t) in M is also lifted horizontally; a curvex̃h(t)
in T* M is called a horizontal lift ofx(t), if p@ x̃h(t)#

5x(t) and if the tangent vector tox̃h(t) is horizontal. To
give an example of horizontal lifts of curves, we conside
geodesicx(s) with s the arc length parameter. Letj(s) de-
note its tangent vector and letpi(s)5gi j j

j (s). Then, a curve
@x(s),p(s)# in the cotangent bundleT* M is shown to be a
horizontal curve. In fact, differentiation of@x(s),p(s)# with
respect tos along with the geodesic equation forx(s) pro-
vides

d

ds
@xi~s!,pi~s!#5~j i ,G i j

k pkj
j !5j i~s!Di , ~A6!

as is wanted. From Eq.~A6! along withj i(s)5gi l pl (s), we
observe that the curve@x(s),p(s)# is a geodesic flow, an
integral curve ofXK @see Eq.~27!#.

Now we assume thatj is a tangent vector field to a con
gruence of geodesics inM. According to Eq.~A5!, we can
define the horizontal liftj̃h on T* M . With the restriction
pi5gi j j

j (x) imposed, the Hamiltonian vector fieldXK be-
comes equal to the horizontal liftj̃h. Hence, a congruence o
geodesics inM is lifted to a family of geodesic flows inT* M

along with j̃h5XK .
We proceed to discuss lifts of geodesic deviations.

Y(s) be a vector field defined along the geodesicx(s). We
define a vector fieldX(s) along a geodesic flow@x(s),p(s)#
with pi(s)5gi j j

j (s), by

X5YiDi1gi j ~¹jY! jD ī . ~A7!

We note here that theX(s) is defined independently of th
choice of adapted frames. IfX(s) satisfies the lifted Jacob
Eq. ~32!, then theY(s) should be a Jacobi field. Conversel
for a given Jacobi fieldY(s) defined along a geodesicx(s),
we may form a lifted vector fieldX(s) according to Eq.
~A7!, which is defined along a geodesic flowP(s)
5@x(s),p(s)# with pi(s)5gi j j

j (s). Then,X(s) solves Eq.
~32!.

2. Killing vector fields

We now wish to investigate the relation between the
nonical lift ~A3! and the lift ~A7!, wherej is viewed as the
tangent vector field to a congruence of geodesics inM. To
this end, we first consider symmetry of our Hamiltonian s
tem with the Hamiltonian functionK. We assume here tha
for a vector fieldY on M the functionF5u(Y)5Yipi is a
constant of motion;XK(F)52$K,F%50, where$•,•% de-
notes Poisson bracket. Then one obtains@XK ,XF#

52X$K,F%50. This implies thatỸ5XF satisfies the linear-
ized Eq.~32! along any geodesic flow. On the other hand,
conditionXK(F)50 holds, if and only ifY is a Killing vec-
tor field, an infinitesimal isometry, i.e.,LYg50, as is easily
06620
d
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t
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e

seen. It is well known that every Killing vector field satisfie
the Jacobi equation along any geodesic.

Now, we assume further that we are given the tang
vector fieldj to a congruence of geodesics inM. If restricted
on a subspaceL determined bypi5gi j j

j in T* M , the ca-
nonical lift Ỹ of a Killing vector fieldY is expressed as

ỸuL5YiDi2gjkjk¹ iY
jD ī 5YiDi1gi j ~¹jY! jD ī ,

~A8!

where use has been made of the formula that

gi j ¹ iY
k1gik¹ iY

j50, ~A9!

which is a necessary and sufficient condition forY to be a
Killing vector field. Thus, we have found that ifY is a Kill-
ing vector onM, and if the canonical liftỸ is restricted toL
determined bypi5gi j j

j , then ỸuL is equal to the lift~A7!
with j the tangent vector field to a congruence of geodes

3. Levi-Civita connection of T* M

The Levi-Civita connection¹̃ is defined on the cotangen
bundle T* M through the Sasaki metricg̃. We denote the
Christoffel symbols for this connection byĜBC

A ;

¹̃]B
]C5ĜBC

A ]A ,

where Roman capital indices run from 1 to 2m and ]A are
the standard frame;

] i5
]

]xi
, ] ī 5

]

]pi
, i 51, . . . ,m.

The Christoffel symbols are given, as usual, by

ĜBC
A 5

1

2
ĝAD~]BĝCD1]CĝDB2]DĝBC!,

where ĝAB are components ofg̃; ĝAB5g̃(]A ,]B). We de-
note the coefficients of the connection¹̃ with respect to the
adapted frame byG̃bg

a ,

¹̃Db
Dg5G̃bg

a Da ,

where Greek indices also run from 1 to 2m, but indicating
that they are indices for the adapted frame.

Let the functionsVbg
a be defined by

@Db ,Dg#5Vbg
aDa .

Then, the torsion-free condition for¹̃ is put in the form

G̃bg
a 2G̃gb

a 5Vbg
a.

A straightforward calculation yieldsVbg
a as follows:

@Di ,D j #5pl Ri jk
l Dk̄ , @Di ,D j̄ #52G ik

j Dk̄ ,
6-14
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TABLE II. Kuntzmann & Butcher method, order six. The upper-right block is the matrix (ai j ), the left
column is the vector (bi), and the lower raw is the vector (ci).
nt

,

e-

a

ter

gh
@Dī ,D j #5G jk
i Dk̄ , @Dī ,D j̄ #50.

We are to write outG̃bg
a in terms ofg̃ab andVbg

a, where

g̃ab5g̃(Da ,Db), the components ofg̃ with respect to the
adapted frame. The covariant derivative of the metricg̃ must
vanish for all vector fieldsX on T* M ; ¹̃Xg̃50, so that one
has

Dbg̃gd2G̃bg
« g̃«d2G̃bd

« g̃g«50.

Further calculation provides

Dbg̃gd1Dgg̃db2Ddg̃bg

5~ G̃bg
e 1G̃gb

e !g̃ed1~ G̃bd
e 2G̃db

e !g̃eg1~ G̃gd
e 2G̃dg

e !g̃eb

5~2G̃bg
e 2Vbg

e!g̃ed1Vbd
eg̃eg1Vgd

eg̃eb ,

which results in

G̃bg
a 5

1

2
g̃ad~Dbg̃gd1Dgg̃db2Ddg̃bg!

1
1

2
~Vbg

a1Va
bg1Va

gb!,

where

Va
bg5g̃adVdb

eg̃eg .

A straightforward calculation shows that the compone
G̃bg

a are given by

G̃ jk
i 5G jk

i , G̃ j k̄
i

52
1

2
Rj

ikl pl , G̃ j̄ k
i

52
1

2
Rk

i j l pl ,

G̃ j̄ k̄
i

50, G̃ jk
ī 5

1

2
Rjki

l pl , G̃ j k̄
ī

52G i j
k ,

G̃ j̄ k
ī

50, G̃ j̄ k̄
ī

50. ~A10!

Covariant derivatives of vector fields are then expressed
terms of these coefficients, as
06620
s

in

¹̃X1
X25@X1

bDbX2
a1G̃bg

a X1
bX2

g#Da , ~A11!

where (X1
a) and (X2

a) are components ofX1 and X2 with
respect toDa , respectively. In particular, the covariant d
rivative of X5XiDi1Xī D ī with respect to the horizontal lift
j̃h5j i(s)Di along a geodesic flow as a horizontal lift of
geodesic takes the form

~¹̃ j̃hX! i5
dXi

ds
1Gk j

i jkXj2
1

2
Rk

i j l pl jkXj̄ ,

~A12!

~¹̃ j̃hX! ī 5
dXī

ds
2G ik

j jkXj̄ 1
1

2
Rk ji

l pl jkXj .

If X5 j̃h, these equations give rise to

¹̃ j̃ hj̃ h50,

which implies that the horizontal lift@x(s),p(s)# of a geo-
desicx(s) on M is also a geodesic onT* M with respect to
the lifted metricg̃. We note here that the arc length parame
s with respect tog̃ reduces to the arc length parameters, if
the curve is horizontal.

APPENDIX B: SYMPLECTIC IMPLICIT RUNGE-KUTTA
METHOD

Suppose we are given a dynamical system inRl

dx

dt
~ t !5 f ~x,t !. ~B1!

Numerical integration of this equation is performed throu
discretizing it with time sliceh. The s-stage Runge-Kutta
method for integration is given by

x85x1h(
i 51

s

biki
6-15
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ki5 f S x1h(
j 51

s

ai j kj ,t1cihD , i 51, . . . ,s,

where (x,t) goes to (x8,t1h) after one step, andai j , bi ,
d

06620
andci are real constants with( i 51
s ci51. Note that the sec-

ond of the above equations defines implicitlyki . The three-
stage Runge-Kutta method, namely the sixth-order Kun
mann and Butcher method, is defined as in Table II.
d,
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