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Geometric approach to Lyapunov analysis in Hamiltonian dynamics
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As is widely recognized in Lyapunov analysis, linearized Hamilton’s equations of motion have two marginal
directions for which the Lyapunov exponents vanish. Those directions are the tangent one to a Hamiltonian
flow and the gradient one of the Hamiltonian function. To separate out these two directions and to apply
Lyapunov analysis effectively in directions for which Lyapunov exponents are not trivial, a geometric method
is proposed for natural Hamiltonian systems, in particular. In this geometric method, Hamiltonian flows of a
natural Hamiltonian system are regarded as geodesic flows on the cotangent bundle of a Riemannian manifold
with a suitable metric. Stability/instability of the geodesic flows is then analyzed by linearized equations of
motion that are related to the Jacobi equations on the Riemannian manifold. On some geometric settings on the
cotangent bundle, it is shown that along a geodesic flow in question, there exist Lyapunov vectors such that two
of them are in the two marginal directions and the others orthogonal to the marginal directions. It is also
pointed out that Lyapunov vectors with such properties cannot be obtained in general by the usual method that
uses linearized Hamilton’s equations of motion. Furthermore, it is observed from numerical calculation for a
model system that Lyapunov exponents calculated in both methods, geometric and usual, coincide with each
other, independently of the choice of the methods.
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|- INTRODUCTION X,(t), a=1,...,N. The Lyapunov vector¥,(t) are then
Natural Hamiltonian systems with many degrees of freeobtained by orthogonalizing these solutions on the Gram-
dom have Hamiltonian functions of the form Schmidt method

N

H(a.p)= ; 2 3pip+V(a). D 2 " (Xa(t),Vi(1))

’ t)= e Iy, a=1,... A,

E Valt ) VoD Vp(0) o

In spite of the simple appearance, those Hamiltonian func- )
tions having appropriately chosen potential functions are

used in a wide variety of physical sciences such as plasmahere(X,V) denotes the inner product #f andV. Theath
physics, condensed matter physics, and celestial mechanidsiapunov exponenk , is calculated as

However, the potential functions describe nonlinear interac-

tions, in general, so that chaotic or highly unstable trajecto- IVa(d)]|

ries take place in respective phase spaces, as is widely rec- N —I I ||V (O)||

ognized. The exponential instability of trajectories are a
measured in terms of Lyapunov exponents, which describe

time-averaged .prop_erties of _ch_aotic trajector_ies. Eurthgr, imt is to be noted that the values of the Lyapunov exponents
the study of directional deviations of chaotic trajectories,are known to be independent of the choice of initial values of

4

Lyapunov vectors will be of great use. the Lyapunov vectors except for vanishing Lebesgue mea-
The Lyapunov exponents and the Lyapunov vectors argure[1,2], and that the exponents are ordered\as=\,

defined through linearized Hamilton’s equations of motion.>...=),,.

For the Hamiltonian(1), the linearized equations take the  Since the Lyapunov exponents are time-averaged quanti-

form ties, they are suitable for the study of statistic properties of

_ N 5 Hamiltonian systems. For example, phase transitions are in-

d—QI—P @_ —E \ 0ol i=1 N vestigated by the use of Lyapunov exponents. In fact, the

dt " dt = O',qiaqj[q( QL =1 N, second-order phase transiti@] and the Kosterlitz-Thouless

) transition[4] are characterized by the discontinuity in the
largest Lyapunov exponents and by a sudden change in the
where X=(Q*, ... QV,Py, ... Py) is a 2N-dimensional gradient of the largest Lyapunov exponent against energy,
vector representing a deviation from a reference trajectoryespectively. Further, the sum of all positive Lyapunov expo-
(q(t),p(t)) to a nearby trajectory. The linearized Ed8) nents, which is also viewed as a function of energy, is used in
have N linearly independent solutions, which we denote bythe discussion of a dynamical phase transifidl) according
to which trajectory’s phase transition from nearly integrable
behavior to chaotic behavior occurs in an energy region in
*Email address: yyama@amp.i.kyoto-u.ac.jp which the sum of positive exponents breaks into a rapid in-
TEmail address: iwai@amp.i.kyoto-u.ac.jp crease against energy. In contrast with this, the
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Lyapunov vectors are expected to be useful in studying dy- N N
namical behavior of chaotic trajectories, since they serve as  ds’= E gij(q)dqidqiz E gij(a)
time seried6,7]. hi=1 hi=1

sp aSCl:spTos een,tf;actcgr(;?:grfoné(eqi)t,rijﬁgtgga If?)r?évglnlilnne:rls hasgn the other hand, the linearized Newton’s equations are put
independent Lyapunov vectors from solutions to the linear" the form
ized equations of motion along the reference trajectory. o i )

However, two of the Lyapunov vectors that are associated dQ +2 IV i—0. i=1 N ®)

with Lyapunov exponentd and \y.; are considered as dt2 =1 9q'9q) ’ T

marginal, since\y and Ay, 1 should vanish, as is widely

recognized. One of those two Lyapunov vectors is the tanEquations(6) and (8) are not transformed to each other
gent vector to the trajector), and the other the gradient through the parameter transformatiér), while Newton’s
vector of Hamiltonian function, gradl We may interpret equations of motion and geodesic equations for the Jacobi
these vectors as follows: The displacement in the directiometric are transformed to each other. This geometric method
Xy is regarded just as a certain time displacement in thénas been introduced in the estimation of the largest
reference trajectory, and the displacement in the directiolyapunov exponenk, with the aid of statistical mechanics
gracH will give rise to a transfer to a nearby trajectory with [8—11]. They studied instability of geodesics through the Ja-
an energy value different from that of the reference trajeccobi equation, a second-order differential equation, while the
tory. In view of this, in order to analyze the instability of Lyapunov analysis needs first-order differential equations.
trajectories, we are allowed to require that the two directions The geometric approach we will take in this paper is to be
pointed by the vectorXy and gradl be separated out from made on the cotangent bundlEM of the Riemannian

the other 2N— 2 directions. Put another way, the requirementmanifold M in order to find first-order differential equations
means that a Lyapunov vector that is orthogonal to the planassociated with Eq6) and thereby to construct Lyapunov
spanned byX, and gratH at an initial instant has to be vectors that satisfy the above-stated requirements. We will
orthogonal to the plane spanned Ky, and gradi at every  first work with generic linearized Hamilton’s equations of
instant. If the requirement is fulfilled, we will be able to motion onT*M, and then specialize the resultant equations
discuss the instability of trajectories without influence of theto linearized Hamilton’s equations for geodesic flows on
two marginal directions. T*M, which will be found to project to the Jacobi equations

Unfortunately, the usual method of Lyapunov analysis onon M. Further, we will introduce a lifted metric on the co-
the basis of Eq92) does not satisfy the requirement in gen- tangent bundlél* M to make it possible to discuss the or-
eral. This is because for any solutidft) to Eqg.(2) one has thogonality of vector fields of* M. The lifted metric may

be called the Sasaki metric. On this setting, we will be able
E(X gracH)=0 5) to find Lyapunov vectors satisfying the above-stated require-
dt ' ments along any geodesic flow @i M. Put in detall, it will
) ) _ be shown that along any geodesic flow BhM, there exist
so that one obtains(X,gradd)=0 at any instant if |yapunov vectors such that those associated with the vanish-
(X,gradH)|;—o=0 at an initial ins_tant, but, in general, by N0 jng Lyapunov exponents, and ., are Xy and grad,
means can one make,Xy) vanish at any instant, so that respectively, and the otheN2-2 Lyapunov vectors are all
even the first Lyapunov vectdr,; cannot be made orthogo- orthogonal to the plane spanned Xy, and graéi at each
nal to the plane spanned B, and gradH at every instant.  point of the geodesic flow.

A way to construct Lyapunov vectors that satisfy the Thjs article is organized as follows: Section Il contains a
above-stated requirement is to adopt linearized equations @fief review of geodesics and Jacobi fields and, in particular,
a different type from the usual or{@). To take a geometric of the Jacobi metric, whose geodesics are equivalent to tra-
approach to Hamilton's equations of motion is a step towargectories of the natural dynamical system with a fixed total
finding such Lyapunov vectors. As for the geometric ap-energy. In Sec. Il and succeeding sections, Einstein’s sum-
proach, it is known that if the total energy of the naturalmation convention is adopted, and we choose to denote by
dynamical system is fixed & Newton’s equations of mo- (xi) |ocal coordinates on a generatdimensional Riemann-
tion may be equivalently expressed as ggodesic equations 4, manifold, and by ') the Cartesian coordinates &

a Riemannian manifoldNl,g;;), whereM is a subspace of = section Il is concerned with geodesic flows on the cotangent
the configuration spaceR™ defined by M={qeR“E  byndleT*M, which project to geodesics di. To describe
—V(g)>0} andg;; is the Jacobi metric defined by;(d)  geodesic flows in a more geometric way, we introduce an
=2[E—-V(0q)]6j; . Then the linearized equations of the geo- adapted frame and a lifted Riemannian metricTéM . Lin-
desic equations are given by the Jacobi equations of the for@arized Hamilton’s equations of motion are discussed in Sec.
i Ko IV, and it will be shown that there exist Lyapunov vectors
d_X+ R. indidizo i=1 N, (6) that satisfy the above-stated requirement along a geodesic
ds? 1 M7 ds ds ey flow on T* M. Section V is for numerical calculations for a
. model system with three degrees of freedom. Lyapunov vec-
where Ry are the components of the Riemann curvaturetors and Lyapunov exponents are calculated numerically for
tensor, ands is the arc length defined as the model system in both geometric and usual methods to

dq' do’
E Edt . (0

N
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compare the respective results. It will be shown that [£Y]=0 (12)
Lyapunov exponents calculated in respective methods coin-
cide with each other, independently of the choice of methin the same domain as that fér The condition(11) means
ods. Section VI is devoted to concluding remarks. Appendithat a geodesic witlf its tangent vector is carried congru-
ces are attached in which related topics on geometry ogntly to another infinitesimally nearby geodesic by the infini-
cotangent bundles and a symplectic implicit Runge-Kuttaesimal transformatiofy. Thus,Y is viewed as a deviation
method for numerical integration are reviewed. In particularof geodesics. The vector fiel§ may have singularity at
lifting vector fields onM to T*M and the Levi-Civita con- \yhich £ is not defined uniquely, an¥ may vanish there.
nection with respect to the lifted metric oF*M are dis-  With this in mind, we operatd ;£=0 with Vy and use the
cussed. definition of the Riemann curvature tensor and of the torsion,
which vanishes identically, to obtain the Jacobi equation
Il. GEODESICS AND JACOBI FIELDS
A. Jacobi equations VeV Y +R(Y,£)§=0. (12)
Let (M,g) be anm-dimensional Riemannian manifold Here, as is well known, the torsion tensor and the Riemann
with metricg. The metric induces the Levi-Civita connection curvature tensor are defined, respectively, to be

V on M; for vector fieldsY, Ze X(M), X(M) denoting the

set of vector fields orM, the covariant derivativé/Z is T(Y,2)=VyZ-V;Y-[Y,Z],
defined, in terms of local coordinates'( . .. x™), to be

i R(Y,Z) W=V VW=V, V\W—=Vy #W,

| 9Z ok
ax!

R

X where Y,Z,WeY(M), and the Riemann curvature tensor
has symmetries such as

where (') and ') are components of and Z, respec-

tively, the Christoffel symbol:iF‘jk are defined as g(R(Y,Z2)W,U)=—g(R(Z,Y)W,U)=—g(R(Y,Z)U,W)
k=2 axl axk ox” N7 .
whereY,Z,W,U e X(M). Local components of the Riemann
with components of the metric curvature tensor are expressed as
(a9 o R _mom _(R(aaaa
glj g é’Xi ’ (3’Xi ) gl]g [ ijk/ ijk Im/=9 07Xi’(7Xj (7Xk’(9X'/ ,
For a geodesic(s) with s the arc length parameter, the T ot
tangent vectog to the geodesic satisfies the geodesic equa- R /=3 K p/pm_p/pm
tion ijk ox ax) imt jk— 1 jmt ik
V.ee d¢ i g gk J _0 9 In the next section, we will give an example of Riemann-
&= EJF K&'s §|C(S)_ ' ©) ian metrics whose geodesics are equivalent to trajectories of
Newton’s equations of motion
where .
. dq' oV .
dax' ¢ —2+—.:O, i=1,...N. (14
=— — dt aq'
ds X'

C(s,
© Then, in order to analyze stability/instability of trajectories
with of the natural Hamiltonian system, we can deal with the Ja-
5 e cobi equation, a linearization of the geodesic equation. How-
ds”=g; dx'dx’. (100 ever, the Jacobi equations in their original form are not suit-

We are interested in stability/instability of geodesics. Toable to Lyapunov analysis.

this end, we consider a congruence of geodesics that looks _ _ _

like a fluid whose flow lines are geodesics with t(s) as a B. Geodesics for the Jacobi metric

member of them. Then we may consider that the tangent consider equations of motion, E@.4), on RN, which we
vector£ to c(s) is extended to be a vector field defined in acq)| g natural dynamical system. L, be an open submani-

neighborhood of the original geodesits). We may also  fq|q of the configuration spacgN, which is defined to be
assume that there exists a vector fi¥ldatisfying the con-

dition M;={qeRN|V(q)<E}. (15
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As is well known, if energy is fixed &, almost all trajec- through the Jacobi equation, a linearization of the geodesic
tories are confined iM ; whenN=2. On the other hand, the equation. However, the Jacobi equation is a second-order

Jacobi metriag; is defined, inM;, to be differential equation, while Lyapunov analysis is applied to
first-order differential equations. We hence need a first-order
(92)i=2[E=V(a)]6;; . (16)  differential equation associated with the Jacobi equation in

. - o . order to apply Lyapunov analysis. To find such a first-order
According to Maupertuis’s Principle of Least Action, an ex- differential equation, we are working on the cotangent

tremal of the action, the integral of the kinetic energy alongbundIeT* M of a Riemannian manifold/ along with some

o e S e o ke et sting ups oI . Relte tpics o il
: P P : e described in Appendix A.

of the variational problem of lengths of paths with respect to At first. let us be reminded of a minimum on cotangent
the Jacobi metric provides an actual trajectory of the tOtabundIes i_eﬂvl be anmdimensional Riemannian manifgld
energyE [12,13. From Eq.(lO)_ along with the Jacobi metric endowed with Riemannian metrg;gijdxic@dxi, andT* M
g;, the arc length parametsris shown to be related to the . L
time parametet b the cotangent bundle &fl with the projectionm: T*M —M.

P y Let (x') and (x',p;) be local coordinates in an open subset

ds?=4[E—V(q)]?dt?, (17 UCM and inm *(U), respectively. Further, letx(,p;) be

cjinother local coordinates in 7 (V) with

and the tangent vector to a geodesic is always unity accor — .
g 9 y y 7 YU)N7 1(U)#J. Then one has the coordinate trans-

ingly iy
o formation in the intersectioar™1(U) N7~ 1(U),
il dq' do’ [ dt)|?
0,8 =0;¢'¢ —Z(E_V)b‘ijgg—[z(E_V)] ds S oo
X=x(X), Pi==p;- (19
=1. X

Since the Christoffel symbols for the Jacobi metl®)

. A. Geodesic flows
are given by

We recall that Newton’s equations of motion have been
already “geometrized” so as to be geodesic equations on a
, (18) suitable Riemannian manifold, so that further external force
does not need to be taken into account anymore. In other
the geodesic equations for the Jacobi metric are expressed Wgrds we have only to consider a free particle motiorvon
In the Hamiltonian formalism, the Hamiltonian we then have
&q 1 4V dgl dg 1 oV to study should be given, of* M, by

ds2 E—V g ds ds 4(E—V)2(9_qi_0

-1 aN . IV

i = —— 0
W2EV) | 7q K g

1 .
K=39"()pip;, (20)
which prove to be equivalent to Newton'’s equations of mo-
tion (;4) on account of Eq(17). However, thg Jac9b| Egs. where @'1):=(g;) . Hamilton's equations of motion fd¢
(6) with the curvature tensor for the Jacobi metric are not N

. : . o are then put in the form

brought into the same equations as EB], a linearization of
Newton’s equations of motion, in general. Components of dd 9K
the curvature tensor fag; are indeed put in the forifil1,13

= =¢ip;
dS apl g pJ1
Rijk,=Ci 0j+ Cjk6i,—Cikd;,—Cj ik, (21)
dp; aK :
h ]
where & 0 9 Tipkp,
co_ PV . 3 Vv
ij _ﬁqiaqj 2(E-V) 4q aq where use has been made of the equality
1 N NV g
4E-V) " o9k aq” " ax!

It is an easy matter to show that E@1) projects to geodesic
equation onM. In fact, put together, differentiation of the

In the previous section, we have mentioned that trajectofirst equation of Eq(21) with respect tos and the second
ries of a natural dynamical system with a fixed energy mayequation of Eq(21) along with the above equality provide
be regarded as geodesics on a suitable Riemannian manifolgeodesic equations. As is well known, Ef1) is associated
and that stability/instability of the trajectories are analyzedwith the Hamiltonian vector fielKx given by

Ill. GEODESIC FLOWS ON COTANGENT BUNDLES
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K o oK @ The transformation(25) implies thatD;, i=1,...m,

. J . J

KD P 9'p;— +9"Tpkp, o and D7, i=m+1,...,2n, define, respectively, subspaces
22) Hp and.Vp of the tangent spac§pT*M at each pointP

e T*M independently of the choice of adapted frames. Thus

Integral curves of Eq(22) are called geodesic flows. We ©N€ obtains a direct sum decomposition of the tangent space

note here that the nomenclature “geodesic flows” are usuf® T"M at each poinP e T*M,

ally assigned to the corresponding flows on the tangent enn

bundle, but we use the word for convenience’s sake. TeT"M=Hp®Vp. (26)
It is worth noting here that how geodesic flows 8hM

project to geodesics oM. Let P(s)=(x(s),p(s)) be a geo-

desic flow with an initial value(x(0),p(0))=(a,b) with

The subspacell, andVp are called the horizontal and the
vertical subspace of pT* M, respectively. We notice here

o . thatHp and T ;)M are isomorphic as vector spaces. Note
gllbiibj:”l' Define a tangent vectar to M ata=m(P(0))  fyrther that the( %ransformation rule for the standard frame
by v'=g"b;. Then the projectiox(s) =m(P(s)) is @ geo- 14 5/5p.1 is mixed up, so that one cannot define a sub-
desic with the initial valuex(0),x(0))=(a,v). Varyingb  space, say, spai/dx'} independently of the choice of natu-
eTaM with g'bbj=1 but fixing a, we obtain an ral frames. Sefl4] for adapted frames on the tangent bundle
(m—1)-parameter family of geodesic flows @i M, which ~ TM.
projects to anifph— 1)-parameter family of geodesics passing In terms of the adapted frame, the Hamiltonian vector
the pointa of M. Furthermore, the vector fieldy projectsto  field X« becomes expressed as
the tangent vector fiel& to this family of geodesicdM. -
However, £ has singularity only afie M in a neighborhood Xk=Di(K)D;—D;(K)Di=g"p;D;, (27)
of a. We have to note that if all geodesic flows @i M ] . ] )
a tangent vector field uniquely. If there is another that geodesic flows are horizontal curves in the sense that the
(m—1)-parameter family of geodesic flows 3fiM, it may  fangent vectors to them are always horizontal.
project to anotherroi—1)-parameter family of geodesics on

M along with a tangent vector field liké C. The Sasaki metric
As is already seen, the tangent spaceTtdV at each
B. Adapted frames point of T*M is decomposed into a direct sum. We may

To describe geodesic flows in a more geometric way, wélefine a metric on™*M so that the decomposition may be
introduce an adapted frame and an adapted coframe dgithogonal direct sum. One ~of such metrics is the Sasaki
7~ 1(U)CT*M by the use of the Christoffel symbdﬁk on  metric, which is a lifted metrig given by
M. The adapted frame and coframe are definedri(U),

to be =g, 00o+gioe0. (28)
) J J This metric is defined independently of the choice of adapted
Di=;+ kaikj % DT=%, (23 coframes. We notice here that the Sasaki metric was intro-
X j i

duced on the tangent bundleM [15], but we use the same
nomenclature on the cotangent bundfeM as well.

By using the Sasaki metric, the arc length M is
defined as

and

=dx', 6'=dp;—py I, (24)

_ do?=gj;dx'dx! + g/l (dp; — pyT"f5,dx™) (dp; — p, 7, dx").
respectively, wheré=i+m. These frames are dual to each

other, i.e., they satisfy It then turns out that geodesic flows @i M take the same
_ _ _ _ — _ arc length as the corresponding geodesicdvbhave, since
6'(D;)= S, ¢'(Dj)=0, 6¢'(Dj)=0, 6' (D)= Sl one has d-2=gijdx'dx1=ds2 for horizontal curves, and

since geodesic flows are horizontal. Hence, the paranseter
If there is another adapted fran§®;,D7} in an open set used in Hamilton’s Eq(21) may be interpreted as the arc
ﬂ_—l(U) and if the intersectionrr‘l(U)ﬂw‘l(U) is non- Iength onM, so that the geodesix(s)=m(P(s)) on M is
empty, then from Eq(19) it follows that the adapted frames d€scribed in the arc length parameter. _
are subject to the transformation We W!|| adopt the Sasaki metric o'ﬁ.* M to dlscuss-or-
thogonality of Lyapunov vectors 6R* M in the next section.

— ox —
Di == Dj, DTZQDT- (25 IV. LYAPUNOV ANALYSIS OF GEODESIC FLOWS
On the basis of the geometric setting up, we are to find a
For adapted coframes, an analogous transformation holds éisst-order differential equation associated with the Jacobi

well. equation, and thereby discuss Lyapunov vectors.
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A. Linearization of Hamilton’s equations of motion A long but straightforward calculation q_fX,XH]|p(s)=0
For a general Hamiltonian functior, linearized Hamil- then provides linearized Hamilton’s equations of motion as
ton's equations of motion are put, as is well known, in the/0lloWs:

form _
dx' | ¢°H .\ J*H [ 2 T
dXI (92H 5(]+ (92H )’\(T ds aplaxJ ﬁpiﬁp/ Pk 7 ﬁp,@pj ’
ds &piaxi pidp; _
- dX’ 9°H L H 9°H s 9°H
i 2 2 —_— = — -
AN AL ALY ds X axiap, ¥ ap I
ds  gxiox) axiop; , .

B J°H i M QAT
whereX=X!g,+ X! stands for a deviation of Hamiltonian ap Pm o ap Pl my | Pl — <K TP ax”‘ Pm
flows, whereg; = d/ 9x' andd;= 9/ dp; . These equations may
be obtained from the conditiohX,X,]=0 as well, where 9°H L 9°H P 30
Xy is the Hamiltonian vector field, ﬁxi(9pj P, p, P

where use has been made of the formula

ﬁpl X axt api i
In fact, the condition X,X,]=0 restricted to a prescribed s~ Di(H)D;(X) = Dj(H)D(X) =Xu(X),
Hamiltonian flowP(s)=(x(s),p(s)) provides

and of a similar formula for NT/ds.

% X _ 9*H it 9*H i d In what follows, we take the Hamiltonian given by Eq.
[X,Xullpe= Ip ) Py | axi | PO (20). The equation of deviatiofB0) then takes the form
2 2 _ dX’ . . =
_( (9iHj)"<j+ (?iH 5(])% E:_F}kgk/p/XJ'FgIJXI,
axlaxl”  axiap, 1
_ (39)
dXi 9 dxi g dX' T L S
-5 cwm E:_Rjk/ig Png” P X+ T g™ p, X
I
S Xlpg  ® ilpg
The right-hand side of Eq.31) must be evaluated along a
where we have used the formula geodesic rowP(s) (x(s),p(s)). Since one hag'p;(s)
oi oi oi =dx'/ds=:¢'(s) along the geodesic flow, E¢31) can be
axt ﬁﬁ_ IH X" 1) brought into the form
ds  op gxk  oxkap ™~ _
- oy . —:—F;kgkxj+g|JxJ,
and a similar formula for ¥'/ds. It is to be noted here that ds

the condition X,X]=0 implies that a Hamiltonian flow, an _

integral curve ofX,,, is dragged to another infinitesimally : Kersei o 1] 2k

nearby Hamiltonian flow by the infinitesimal transformation as Rj€°€" X+ T £°X0. (32

X, i.e., X is a deviation of Hamiltonian flows. With this in

mind, we may obtain linearized equations with respect to thgye can show that this system of equations is the first-order
adapted frame, if we calculafeX,X;]=0 with X and X, differential equation that project to the Jacobi equation, and

expressed as hence, may be called the lifted Jacobi equation. The proof
. — runs as follows: On account of Ed29), the quantities
— I I'N— f N
X=XD;+ XDy, (X'(s)) and (X(s)) may be viewed as a tangent and a co-
B tangent vector tdV along the geodesix(s), so that the first
Xu=Di(H)D;—D;(H)Dy, equation of Eq(32), rewritten as

respectively, and restrict the resultant equation to a pre- X .
scribed flowP(s). We note here that the component, ') s + T &I = gl XJ,
with respect to the adapted frame transform according to

oxi N implies that(g”Xj_(s)) is equal to the covariant derivative of
X=—x, X=X, (290  (X!(s)) along the geodesix(s). The second equation of Eqg.
ax! X! (32 then implies that
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Theorem A solution X(s) to the linearized EQ.(32)
which is in Np(g) (resp. inEp(g)) at an initial moments
=0 keeps belonging tlp ) (resp. toEp(g)) at any instans.

The above two equations are put together to yield the Jacobi The proof of this statement is carried out as follows: As

equation forYy = (X/(s)),

VeV eYx=—R(Yx, &

we have already shownXy(s) and graé(s)+sXk(s)
are solutions to Eq(32), so that the linear combination
of them, a X« (s)+ B(grad (s) +sXk(s))=(a+ Bs)Xk(s)

+ B graK(s), is also inNp(g at any instans, which proves

whereV  stands for the covariant derivation along the geo-the invariance ofNp( under the linearized flowX(s). To

desicx(s).

B. Lyapunov vectors

Here, we show that solutions to E(B2) satisfy the re-

prove the invariance dEp(s) , we consider the temporal evo-

lution of g(X,X) with X a solution to Eq(32). We are to
show that

quirement stated in the Introduction in the Hamiltonian sys- Eg(X,XK)sz(X),

tem with the HamiltoniarK given in Eq.(20). As for the
gradient ofK, we note that the differentialkd and the gra-
dient of K, gradK, are put in the form

dK = g”‘pkai_, gradk =p,Dr,

respectively, where the gradient of a functidh on
T*M, grad-, is defined through

g(grade,X)=dF(X)

for any vector fieldX e X(T*M).

It is an easy matter to verify that E¢R2) is satisfied by
Xk, the tangent vector to a Hamiltonian floR(s) or a
geodesic flow iriT™* M. In fact, the tangent vectofy to P(s)
is given Egq. (27), and has the componentsX'(s)
=g'p,(s), X'(s)=0, satisfying Eq(32). While the gradi-
ent vector along the Hamiltonian floR(s), which is de-
noted by grad(s) for simplicity, is not a solution to the
linearized Eq.(32), the vector gral(s) +sXk(s)=p;(s)Di
+s g*p(s)D; is a solution to Eq(32), as is easily verified.

Taking this into account, we wish to decompose the tange

spaceTpT*M to T*M at every pointP(s) of a geodesic
flow into the direct sum of the plane spanned by hXi{s)

ds

(35
2

@a(x,x@:o.

We can carry out the proof of these equations in the manner
of mechanics as follows: Note thgtX,X) = 0(X), whered
is the standard one form oh*M, i.e., #=p;dx' in local
coordinates. Then differentiation @f(X) with respect tos
results in

d
55 000 =L, (00X))=(Lx, 0)(X) + ([ X, X])

=[du(Xy) 0+ (X )dO](X) = [d(A(Xk)) — dK](X)
=dK(X),

where use has been made @©f the definition of the Lie
derivative of one forms(ii) the condition[ X,X]=0, (iii)
the Cartan’s formula for the Lie derivatiofiiv) ¢(X«)dé
=—dK, and(v) the equalityf(Xx)=2K due to the homo-

r‘E)eneity ofK in p;. Thus, we obtain the former equation of

Eq. (35). Differentiating the former equation of E(B5) with
respect tcs using the equation

and gra€(s) and the subspace transversal to the plane. Let

us define subspaceés ) andEp to be

Np(s):{x S TP(S)T* M |X: o XK(S) +ﬁ graCK(S),
a, Be R},
Epg=1X € TpT*M[g(X,Xk(s))=0,

9(X,grack(s))=0}, (33

d d-
EdK(X)zd—Sg(grad(,X)zo,

a similar equation to E(5), we obtain the latter of E435).
Now, Eq.(35) is integrated to give

XX pis = 90X, Xi) | poy + S AK(X) | b0y -

Since & (X)=g(X,gracK), the above equation implies that
X(s) € Eps) if X(0)eEp(gy. This ends the proof of the in-

respectively, wherdp g is the orthogonal complement of variance ofEp ) under the linearized flow(s). W

Np(s) with respect to the Sasaki metigc Thus, we have the
orthogonal direct sum decomposition,

On the basis of the decompositi¢d4), we can construct
a set of Lyapunov vecto#d/,}, a=1, ... ,2n, satisfying the
requirement mentioned in Sec. I. We are thinking of the

Tp(s)T*MZNp(s)@Ep(s)- (34) Riemannian manifoldN1;,g;) introduced in Sec. II B, and
hencem=N. The firstN—1 linearly independent solutions,
We wish to show that these subspaces are invariant und¢K,(s)}, a=1,... N—1, to the lifted Jacobi Eq(32) are

any solution to the linearized equati¢®2). To this end, we
have to verify,

chosen inEp(), Which are orthogonalized to give first
—1 Lyapunov vector§Vy, ...,Vy_1}. The Nth and (N
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TABLE I. Comparison between the usual method and the geometric methodl-dlimeensional manifold
M is defined in Eq(15), andgg is the Euclidean metric. Note that M ;=M ;x RN,

Configuration Phase Linearized
Method space space Metric Hamiltonian equation
Usual M, M ;xRN e H [Eq. (1)] Eq. (2)
Geometric M ; T*M, o8 K [Eq. (20)] Eq. (32
+1)-th Lyapunov vectors are chosen Np SO as o b_e Oe= 5ijdq‘®dqj+5”dpi®dpj.
Vn(S)=Xk(s) and Vy; 1(s)=graK(s), respectively. This _ _ _ _
is because they are mutual orthogonal and becygs) As was pointed out in Sec. Il B, the geodesic equations

and grad(s) +s X(s) are solutions to the linearized equa- for the Jacobi metric are equivalent to Newton’s equations of
tion and further orthogonal to the first—1 Lyapunov vec- motion for a natural dynamical system with energyWe
tors. Note in addition that any solutiof(s) staying inNps now'veri_fy this fac'F in the Hamiltonign formali;m. The
becomes asymptotically parallel ¥« (s) ass—, so that Hamiltonian vector field andX,;, which are defined on
Xk(s) is assigned to thlth Lyapunov vector and grét{(s) the same phase space in respective manners, are given by
to the (N+ 1)-th Lyapunov vector, respectively. The remain- 0y
ing N—1 Lyapunov vectors are chosen kips, Which are —iin . T A
orthogonal toXx and gra&k as well as to(tiwe firsN—1 Xk=g"piDi, XH_EU( Do (39
Lyapunov vectors by the very definition. Consequently, from L

solutions to Eq(32) with the initial values chosen so as to respectively, whereg"=4§"/2(E—V)]. A straightforward

satisfy calculation along with Eq(18) and%Eipi2+V=E then pro-
(a) Xn(0)=Xk(0), Xn+1(0)=grack(0), vides
(b) X5(0)L{X(s), grac(0)}, a=1,..., N—1N
1
+2,..., N, Xk=5—=—Xy, (37
at the initial momens=0, we may obtain expectedly a set 2(E-V)

of Lyapunov vectors such that

() Vn(S)=Xk(s), Vn+1(s)=graK(s),

(i) Va(s)L{Xk(s), graK(s)}, a=1,...N—-1IN
+2,...,A.

From the propertyi), we may observe that the Lyapunov
exponents\, and Xy, vanish indeed. In fact, since

which implies that Hamiltonian flows both in the geometric
method and in the usual method coincide within the change
of parameters, sidt=2(E—V(q)). Thus, along the same
flow (up to the parameter changee may compare numeri-
cally tangent vectors such as solutions to linearized equa-
tions of motion and Lyapunov vectors. In the following,
X(9)(s) andX(t) denote solutions to the linearized equations
of motion in the geometric method and in the usual method,
respectively.

9(Xk . Xk) =g(grac ,grad) = 2K

is constant along any geodesic flow, one has=Ay.1=0

from the formula(4).
@ B. Orthogonal relations in the usual method

V. NUMERICAL CALCULATIONS FOR COMPARISON In Sec. IV, we have shown that Lyapunov vectors in the
eometric method may be chosen so that two of them may be

In this section, we are to compare the geometric methoghe tangent vectors to the Hamiltonian flow in question and
and the usual method through a model system with threghe gradient vector of the Hamiltonian function along the
degrees of freedom, by numerically calculating Lyapunovfiow, and the others be orthogonal to those two vectors. In
exponents and Lyapunov vectors in respective methods. Wgjs section, we remark that such orthogonal relations holds
will find that the Lyapunov exponents calculated in respecfor part of Lyapunov vectors even in the usual method, in
tlve_methods coincide _W|th each other, independently of th‘?/vhich the Euclidean metrige is adopted inM ;x R.
choice of methods, while the Lyapunov vectors calculated on Let X4(1), . .. Xon(t) be linearly independent solutions

respective Se?“”g ups exhibit different behaviors to eacl?o Eq.(2), for which the initial conditions are taken in such a
other, depending on the method chosen. manner that

. . . . (@ Xn(0)=Xu(0), Xy+1(0)=gracH(0),
A. Comparison of setting ups in respective methods (b) X,(0)L{Xy(0), gracH(0)},
For a natural Hamiltonian system with degrees of free- a=1,... N—1N+2,... N,

dom, setting ups for Lyapunov analysis both in the geometrigyhere X, and grad are the Hamiltonian vector field fa

We note here that the metrige introduced on the phase V,(t), ... Von(t) be Lyapunov vectors formed from
spaceM ;xRN in the usual method is, of course, the Euclid- X,(t),a=1, ... ,N. Then the following two properties hold
ean metric defined, as usual, to be true:
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(i) V4(1), ... V(1) are always orthogonal to greldt), whereWy=E—V(P(0)).

(i) Vnea(t), ... V(1) are always orthogonal t8(t). Let X(ag) and X, denote solutions to linearized Eg82)
The property(i) is easily shown to hold from Ed5). In  and(2), respectively.
fact, solutionsX (1), ... ,Xy(t) to the linearized Eq42) are According to the procedure stated in Sec. 1V, initial con-

always orthogonal to grat(t), if they are initially orthogo-  ditions for linearized Eqs(32) in the geometric method are
nal to gradH(0). Hence, the Lyapunov vectors set as follows:

Vi(t), ... Vy(t) are always orthogonal to greldt), since @ X©(0)=X(0), X{),(0)=grakK (0),

the N-dimensional space spannedW#y(t), . .. Vy(t) is the () XP(0)eEp)NHpy, a=1,...N—1, X{?(0)
same as that spanned By(t), ... Xy(t). For the proof of ¢ Ep@)Vp), b=N+2,... N.

the property(ii), we use the fact that the Hamiltonian vector See Eqgs. (26) and (33) for the definitions of
field X,(t) is a solution to the linearized Hamilton's EQ),  Hp(s), Vp(s), andEp.

so that one hasXy(t)=Xgu(t). Then, Xy(t) is in the Initial conditions for the linearized Eq$2) in the usual
N-dimensional space spanned b¥;(t), ... Xy(t), and method are set as

hence, in that spanned By, (t), ... ,Vy(t). By definition,

the Lyapunov vector®/y . 1(t), ... Voy(t) are orthogonal Xa(0)=X9(0), a=1,...,N.

to V4(1), ... Vn(1), and hence, tXy(t).

The above two properties will be confirmed, as well, byWe here have to verify that these initial vectoXg(0),a
numerical calculations for a model system in a later section=1, ... , N, are indeed subject to the initial conditiots
Moreover, by numerical calculations in the usual method, weand (b) stated in Sec. V B. The verification of this is carried
will observe thatVy,,(t), ... ,Voy(t) are not always or- out as follows: By definition, one ha%y(0)=Xk(0), and
thogonal to graH(t), and thatV,(t), ... ,Vy_1(t) are not further X (0)=Xy(0)/[2(E-V[q(0)])] from Eg. (37), so
always orthogonal tX(t), either. We recall here that, in that Xy(0)=Xyx(0)[2(E—V[q(0)])]. The constant factor

the geometric method, Lyapunov vectors 2(E—V[q(0)]) causes no serious problem, since we are in-
VP ,(s), ... VH(s) are always orthogonal to grii@s),  terested in orthogonal relations between initial vectors.
and thatV{¥(s), ... V{® ,(s) are always orthogonal to Moreover, it is an easy matter to see thx.1(0)

X«(s), which will be confirmed, as well, by numerical cal- =gracK(0)=gracH(0) on account of the assumption
culations for the model system. Here, ¢ andV,, we gradv(0)=0 at the initial point, where we note that gkad
denote the Lyapunov vectors that are obtained in the geome&nd grati are taken with respect to metricg; and gg,
ric method and in the usual method, respectively, to tell theespectively. To verify that the other initial vectors,

difference between them. Xa(0),a=1,... N=1N+2,...,N, are orthogonal to
Xp(0) and to gra#i(0), we use thdollowing four facts:
C. Initial conditions (i) X1(0), . .., Xn-1(0) € Epo)NHp0),

(it) Xn+2(0), . . . Xon(0) € Epo) V(o) s

To compare numerical computation results calculated (iil) Hp(o) and Vp(o, are orthogonal with respect to the

both in the geometric method and in the usual method, W& clidean metric. as is seen from HGS)
have to set both Hamilton's equations of motion and linear- (iv) restricted to the subspacek and V the Ja-
ized equations of motion to share the same initial conditions, "~ = "~ - e S o metr(ioc) are coprg%}mal o each
Hence, in particular, we come to require that the initial CoN-iher

ditions for linearized equations of motion are taken to be '
subject to the condition®) and(b) mentioned in Sec. V B in

the usual method as well as in the geometric method. In this 9lp(0)(X1,X2) =2(E=V)Gelp(o)(X1,X2),
section, we discuss how one may set such initial conditions,
in spite of the difference between metrics used. X1, X2€Hp(oy,

We take a number of initial values,P(0) _ _
=(0'(0),p;(0)), for Hamiltonian flows onT* M, in such a gJ|P(O)(Xl,X2):gElp(O)(Xl,Xz)/[Z(E_V)],
manner that grad vanishes at the initial poir?(0), where
gradv is defined with respect to both the Euclidean metric X1,X2€ Vp(oy-

and the Jacobi metric on the configuration spisice but the

equation grad =0 defines the same points, independently oflt then turns out fronti) and (iv) that X,(0), ... ,Xy-1(0)
the metric chosen. Since the phase spaces in both methodge also orthogonal tXy(0) with respect toﬁElp(o), and
are in common, and since Hamiltonian flows in both meth-further from (ii) and (iii) that they are also orthogonal to

ods are also in common up to the change of parameters, ; ~ .
will obtain a number of Hamiltonian flows in common afterV%NH(o) with respect tOgE|P(O)' A similar statement for
Xn+2(0), ... Xon(0) holds true.

integration. We also have to note that the condition grad
=0 at the initial point implies that the Christoffel symbols
F'jk’s defined by Eq(18) vanish also there, so that the Jacobi
metric is put, at the initial point, in the form The model system we are to consider here is a natural
5 ‘ . B Hamiltonian system with three degrees of freedom that has
gJ|p(o):2W05ijdx'®de+(2WO)‘15'Jdpi®dpj , (38) interactions of Haon-Heiles type,

D. A model system
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3
1 .
H(a,p)=2, | 5P{+Vun(d'a ™),
(39

1
Viu(X,y) =x%y— §y3,

A A

whereqg*=q*. Hamiltonian vector fields both in the geomet-

ric method and in the usual method, denotedpyand Xy, ,

respectively, are given by E§36) with g"' = 8"/[2(E—V)] : S -

andV=33_,Vyu(q,q ). 0. ’ Ay
Hamiltonian flows of Xy, for the Hamiltonian(39) are 001 F . . .

numerically calculated by the use of the fourth-order sym- 0 1000 2000 3000 4000 5000

plectic integrator[16], which is a numerical integration t

method on the basis of discrete time evolution with each step 5 ¢ Convergence of Lyapunov exponents withe0.04.

an explicit symplectic mapping. Initial conditions for Hamil- ~ ;. es represent graphs af9 and A, (a=1,2,3), whereA®

ton's equations of motion are set @(0)=0 andpi(0)  andA,, functions in the time parameter, are obtained by the geo-

=ay; (1=1,2,3), wherey;’s are random VaI.ueS obtained metric method and by the usual method, respectively.
from the uniform distribution function on the intervigd, 1],

and the constant is determined so as to satisfy the energy E. Results of numerical calculations

condition S7_;[p;(0)]?/2=E. For the initial valuesg'(0) Figure 1 shows that Lyapunov exponents calculated in

=0, we verify easily that the condition gré@0)=0 is sat-  poth methods have indeed definite valuesier0.04, where
isfied, which was assumed in the previous Sec. V C. To iNA_'s and Agghs are defined, respectively, to be

tegrate the linearized Hamilton’s equations of moti@y we
take an alternative method, that is, we choose to linearize, 1 |[Va(s(t)l 1 [[Vab)
along a certain Hamiltonian flow, the sequence of symplectic Agg)(t): Inm = A= cIn—

. | ' = t Va0l t [ Va(0)]
mappings already obtained on the symplectic integrator al- _

' . S a=1,2,3,

gorithm. To our knowledge of explicit symplectic integrators,
the symplectic integrator used here and another symplectic
algorithm proposed ifil7] are set up on the assumption that Which are supposed to be conver(g)ent to (L)yapunov expo-
Hamiltonians are of the forrhi(q,p)=T(p)+V(q), so that  NeNts; im_.A,(t) =\, and lim_. AP (t) =1z . Here, the
those algorithms are not applicable to the numerical integraduantities with the superscrigg) are those used in the geo-
tion of Hamilton's equations of motion with Hamiltonians of Metric method. However, to compare the numerical results,
the form K(q,p)==2_,pX[4[E—V(q)]]. This means that We have made\ (9)(s) into a function oft by means of the
we have to take another algorithm to integrate Hamilton’sParameter change. It is to be noted here thift(s) always
equations of motion in our geometric method for Lyapunovvanishes on account of the fact thix{?||=|Xy/|=2K
analysis. What we use in this article is an implicit but sym-=constant. FolE=0.01, 0.02, and 0.03, we have obtained
plectic sixth-order Runge-Kutta metho@untzmann and also definite Lyapunov exponents, which are shown in Fig. 2
Butcher method18], see Appendix B However, we have to along with the dependence on energy. Figure 2 also shows
note here that we do not need to apply that Runge-Kuttéhat the Lyapunov exponents, and)\gg) , calculated in both
method to integrate numerically Hamilton’s equations of mo-methods coincide with each other, which means that the
tion for K, since the solutions to Eq21) coincide with  Lyapunov exponents are obtained independently of the
Hamiltonian flows already obtained by the explicit symplec-choice of methods, geometric or usual.
tic integrator up to the parameter change. We apply the im- We remark here that if one uses the Jacobi K. a
plicit Runge-Kutta method to the numerical integration of second-order differential equation, to calculate the exponen-
the lifted Jacobi Eqs(32), the linearized Hamilton’s equa- tial growth rates of trajectories, one may obtain the same
tions of motion forK. The implicit Runge-Kutta method, value as that obtained in the usual method. For example, for
however, requires an additional process of numerical compuhe Fermi-Pasta-Ulan® model, the largest Lyapunov expo-
tation. In fact, we need to calculate the inverse ofld 6 nent is calculated by using a N2dimensional vector
X 6N matrix at each step of the integration, whéfeenotes (X', dX'/dt) [19], where[X!(t)] is a solution to the Jacobi
the degrees of freedom. For this reason, the CPU time wEqgs. (6) and the Euclidean metric is used for the
have needed to integrate the lifted Jacobi equations by theN-dimensional vector. According t§19], the resultant
implicit Runge-Kutta algorithm is about 26 times as long asvalue of the exponent coincides with the largest Lyapunov
the CPU time we have needed to integrate the linearizedxponent obtained in the usual method. This might suggest
Hamilton’s equations of motion foH by the explicit sym-  that to calculate the largest Lyapunov exponent, one does not
plectic integrator. We have set the unit time slice as wide asieed to work with the cotangent spaces. However, the ad-
h=2.5x 10 ® both for the explicit symplectic integrator and vantage of the geometric method developed in this article is
the Runge-Kutta algorithm. that after the geometric method, we may obtain all the
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0.035 T T T T Figure 3 provides temporal evolutions of inner products
between normalized Lyapunov vectors and the normalized
0.08 tangent vector to a Hamiltonian flow. The inner products
0.025 | both in the geometric method and in the usual method are
denoted byt'? and byt,, respectively,
S(Lé‘ 0.02 V(g)
< o015} t@=7, ——,X t,=g ( Va Xu )
' I v IV X
0.01
Figure 3 shows that all the Lyapunov vectors exceng??
0.005 - in the geometric method are orthogonalXg, and that the
normalizedV{? is equal toX, . On the other hand, we ob-
00' serve also from Fig. 3 that; andV, in the usual method are

not always orthogonal tX,, and that the normalize¥ 3
does not equaK, /| Xy, either. In particular, we remark
FIG. 2. Comparison of Lyapunov exponents obtained by boththatt, takes values around unity in opposition to our require-
the geometric method and the usual method.)\lﬁ) and\,, we ment.
denote Lyapunov exponents obtained by the geometric method and Figure 4 provides temporal evolutions of inner products
by the usual method, respectively. Numerical results obtained imetween normalized Lyapunov vectors and the normalized
both methods are in good agreement. gradient vector of the Hamiltonian, and the inner product
both in the geometric method and in the usual method is

Lyapunov exponents along with the Lyapunov vectorsgenoted by the symbal® andn,, respectively,
among which two vectors associated with the vanishing

Lyapunov exponents may be separated out from the others. (9)

; J ~ [V ~ [V H
This may be observed in Figs. 3 and 4. ngg)—gj<a,grad<) ' na_gE(a’gfa _
From Figs. 3 and 4, we will observe that the Lyapunov IV [Vl “llgracH]|

vectors calculated numerically in the geometric method sat-
isfy the requirements stated in Sec. | and that the Lyapunodll the Lyapunov vectors except for{? are observed to be
vectors calculated in the usual method have the propertgrthogonal to grald, andV{? to be collinear to grag in the

shown in Sec. V B. geometric method, as is expected. On the other hand, the
1 1
0.5 0.5 FIG. 3. Temporal evolutions
5 3 * . of inner products between the nor-
= o = o0 malized tangent vector of a
= Rl * ) = Hamiltonian flow and normalized
-0.5 -05 Lyapunov vectors. The energy is
g 1 ) ) ) set atE=0.04. In(a), (b), and(c),
0 250 500 750 1000 0 250 500 750 1000 straight lines are graphs af®
t t against the time parameter in the
11— 1 ; : ; geometric method, and broken
§ ‘*g; o ;%gé curves are from the usual method,
0.5 * 0.5 1 providing the graphs of,. The
8o e Z0 first and second Lyapunov vectors
s 0 '* 5 0 Vv v are always orthogonal
~ - 1 V2
05 05 to the tangent direction to a
Hamiltonian flow Xy in the geo-
-1 s s -1 metric method, buv/,,V, are not
0 250 500 750 1000 0 250 500 750 1000 always orthogonal taX,, in the
f t usual method. Moreover, the third
1 T " 1 ‘ ‘ ' Lyapunov vector always points to
Bk i the direction ofX in the geomet-
A 0.5 “;*g’s% ~ M& R 0-5 ric method, but does not point to
ool 7 “ X 9 the direction ofXy in the usual
< w5 method. In(d), (e), and (f), only
-0.5 -0.5 straight lines are drawn, which are
graphs from both methods, but
o 20 500 750 1000 "o 230 500 750 1000 they coincide with each other.
t t
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0.5 0.5 %’&%’2 M& FIG. 4. Temporal evolutions
% :5' ¥ ¢ ¥ of inner products between the nor-
S 0 3 0 malized gradient vector of the

Hamiltonian function and the nor-

05 05 malized Lyapunov vectors. The
e , , , 1 energy is set aE=0.04. In (d),
0 250 500 750 1000 0 250 500 750 1000 (e), and (f), straight lines are
t t graphs oh{® against the time pa-
1 . . , 1 rameter in the geometric method,
and broken curves are from the
05y 05 1 usual method, providing the graph
3&‘:‘ 0 ‘”5: 0 b ) of(gr)1a. The 4th Lyapunov vector
S & 3 V,? always points to the gradient
05 & 05 |y . direction of the Hamiltonian func-
% % ; ﬁé tion K, but V, does not always
-1 -1 point to gradH in the usual
0 250 500 750 1000 0 250 500 750 1000 method. Moreover, the 5th and
t t 6th Lyapunov vectorsV® v
1 1 are always orthogonal to grdn
the geometric method, ands, Vg
5 05 ~ 0.5 are not so to grad in the usual
N 0 N method. In (@), (b), and (c),
& ~ straight lines from the two meth-
-0.5 ods are drawn, but each of them
looks like a single line because of
1 0 250 500 750 1000 1 0 250 500 750 1000 coincidence.
t t

Lyapunov vectord/s,V, in the usual method are not always manifolds to their cotangent bundles to take the form of first-
orthogonal to grad, andV, does not point to the direction order differential equations.
of gracH, either. In particularns in the usual method is far When the geometric method is applied, a question arises
from vanishing, taking values around minus unity. as to whether Lyapunov exponents remain unchanged in
These observations agree to what we expect from théheir values or not, in comparison with those obtained in the
theory described in Secs. IV B and V B. We note in conclu-usual method. As we have already pointed out, the linearized
sion that tiny fluctuations around straight lines in Figs. 3 andequations in both methods are different from each other and
4, in particular, Figs. ®) and 4e), seem to be numerical cannot be transformed to each other through the parameter
errors due to the factor [R(E—V)] included in the metric transformation 8=2[E—V(q)]dt, while the equations of
g', Christoffel symboll'j, , and the Riemann curvature ten- motion in both methods are transformed to each other
SOr Ryjy; - through the same parameter transformation. However, the
numerical computation has shown that the values of
Lyapunov exponents coincide with each other, independently
of the choice of methods applied, as far as the model system
In this paper, we have developed a geometric method imvith three degrees of freedom is taken. We guess that the
Lyapunov analysis for natural Hamiltonian systems with Lyapunov exponents are long-term averaged values, so that
degrees of freedom, which is set up on the cotangent bundiéey are independent of the choice of Lyapunov vectors
of a Riemannian manifold endowed with the Jacobi metricalong trajectories, while Lyapunov vectors depend on the
In contrast with our geometric method, the old or already-choice of methods. As for the parameters of trajectories in
known geometric method is established on the Riemanniahoth methods, we assume that the change of parameters must
manifold with the Jacobi metric. According to that method, be subject to the condition<0ds/dt<c along trajectories.
one brings Newton’s equations of motion for a natural dy-On this account, we expect that Lyapunov exponents are
namical system into geodesic equations for the Jacobi metrindependent of the choice of methods for calculation. We
and uses Jacobi equations, linearized geodesic equations,wdl find indeed the coincidence of Lyapunov exponents in
analyze orbital instability of trajectories. However, the Jacobiboth methods from numerical computations for other model
equations are second-order differential equations, whilsystems. Further, observations made from the Lyapunov ex-
Lyapunov exponents and vectors are defined through firspponents are expected to be independent of the choice of
order differential equations. We then need a first-order dif-methods. For instance, a characteristics of the graph of
ferential equation to apply Lyapunov analysis. According toLyapunov spectra\; againsti/N, i=1,... N [20,21,
our method, the Jacobi equations are lifted from Riemanniamhich are observed in the usual method for a wide class of

VI. CONCLUDING REMARKS
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Hamiltonian systems having nearest-neighbor interactionsSports, Science and Technology of Jagd2750060 and
will be found, in the geometric method as well, to be the11640199.

same as that observed already in the usual method. We wish

our geometric method may afford a fresh insight into the AppENDIX A: GEOMETRY OF COTANGENT BUNDLES
observation through Lyapunov vectors.

In our geometric method developed in this paper, we may Vector fields and Levi-Civita connection on a Riemannian
choose Lyapunov vectors so as to satisfy the following remanifold M are lifted to the cotangent bundl&*M, and
quirements:(i) Lyapunov vectors except foNth and (N  thereby the relation between geodesicsMrand geodesic
+1)-th vectors are always orthogonal to both the tangenflows onT*M will be made clear in geometric fashion.
direction to a trajectory and the gradient direction of the
Hamiltonian function(ii) Nth Lyapunov vector points to the 1. Lift of vector fields on M
tangent direction of the trajector)x, and(iii) (N+1)-th
Lyapunov vector points to the gradient direction of the o - i
Hamiltonian function, grad. Along with such Lyapunov one-form 6, which is expressed Igcally ag=p;dx. Note
vectors, we may analyze orbital instability of Hamiltonian that the ¢ is defined globally onr™M. This may be seen
flows in phase spaces without influence of the two marginal®™ the coordinate transformation on the nonempty inter-
directions pointed byXx and gra&k that have vanishing section (19). The exterior de*nvatlve ob, w:=dg, is the
Lyapunov exponentsyy= Ay, 1=0. Moreover, theNth and standard symplectlc form o M. . . .
the (N+1)-th local Lyapunov exponents, which are averages For vector fields oM, a way to lift them is not unique. A
of exponential growth rate in finite time, vanish on any timecanonical way is given as follows: Fafe X(M), the lifted
interval. The local Lyapunov exponents in the usual methodector fieldY is defined through the conditions
are used, for instance, to distinguish nearly integrable sys- _
tems from the otherg22]. T, Y=Y, L560=0, (A1)

In this paper, we have considered the Hamiltonian func-
tion of the formH(q,p) = 22”5”p, p;+V(q) and developed wherem, is the differential of the canonical projection,
the geometric method in Lyapunov analysis. However, theand £ denotes the Lie derivation. Fof=Y's,, a straight-
geometI’IC methOd may be estabhshed for Ham|lt0n|an fUanorward calculation shows that thé is put in the form
tions of the formH(q, p)—ZEIJaJ(q)p p;+V(q), where

The cotangent bundl&* M is endowed with the standard

[a'l(q)] is the inverse of a metric tenspa;;(q)]. In this P a9
case, the Jacobi metric is defined to log(q)=2[E ?=Yi—_—pj—_—. (A2)
—V(a)]aj;(g), and geodesic equations for this metric X’ ax' Ipi
d2q ~dg’ dg¥ Furthermore, owing to Cartan’s formulay6=d[«(Y) 6]
ey F}kg o O +4(Y)de, along with¢(Y) 6= 6(Y), the latter of the condi-

tions (A1) implies that —d[8(Y)]=¢(Y)w, which then
prove to be equivalent to Newton’s equations of motion ~ Shows that thé& becomes the Hamiltonian vector field asso-
ciated withF:=6(Y)=p;Y'. Thus, one has

d?gq" (i) dg dg* oV
— e g a=—a — - oF & OF 4
diz K] dt dt aq V=Xp=oo — =~ —. (A3)

with the total energy fixed &, wherel';, and{;j,} are the _ o
Christoffel symbols formed from the metrt;; anday; , re- With respect to the adapted frame, the canonicaMitekes
spectively, andis the length parameter for the Jacobl metric the form

gij, Which is related to the parametérby ds/dt=2[E o _

—V(q)]. The geometric method we have developed in the Y=Y'D;—p;ViY'Dy, (A4)
Lyapunov analysis of linearized Hamilton’s equations of mo-

tion on the cotangent bundle is independent of the choice ofvhere

the Riemannian metric chosen, so that the theorem stated in

Sec. IV B holds also true in this case. Hence, we may find ooyl
Lyapunov vectors that satisfy the requirements mentioned ViYJ=—i+P{kYk.
frequently. X

In addition to the canonical lift, one may define another
ACKNOWLEDGMENTS lift; for a vector fieldY =Y'd; on M, the horizontal lift ofY

The authors would like to thank Dr. Y. Uwano for valu- IS given onT*M by
able discussions. This work is supported by the Grant-In-Aid A
for Scientific Research of the Ministry of Education, Culture, Yh=Y'Di . (A5)
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From the transformation rulg¢25), the horizontal lift is seen. It is well known that every Killing vector field satisfies

shown to be defined independently of the choice of adaptethe Jacobi equation along any geodesic.

frames. Now, we assume further that we are given the tangent
A curvex(t) in M is also lifted horizontally; a curve"(t) vector field¢ to a congruence of geodesicshh If restricted

in T*M is called a horizontal lift ofx(t), if =[x"(t)] ©n" & Subspace determined byp;=g;;¢ in T*M, the ca-

=x(t) and if the tangent vector {&"(t) is horizontal. To nonical lit Y of a Killing vector fieldY is expressed as

give an example of horizontal lifts of curves, we consider a

Yl =YD —a..8V.YID=Y'D. +q:: D+
geodesicx(s) with s the arc length parameter. Léfs) de- YIL=Y'Di—gj&"V,Y'Di=Y'D;+g;; (VY)'Dr,

note its tangent vector and Ip;(s)=gij§j(s). Then, a curve (A8)
[X(s),p(s)] in the cotangent bundl&*M is shown to be a \here use has been made of the formula that
horizontal curve. In fact, differentiation ¢&(s),p(s)] with B _ _

respect tos along with the geodesic equation fe¢s) pro- gV, Yk+g'kv,YI=0, (A9)

vides
which is a necessary and sufficient condition forto be a

d _ - Killing vector field. Thus, we have found that ¥f is a Kill-
@[X'(S),Pi(s)]Z(é',Frjpkf’)=§'(S)Di , (AB)  ing vector onM, and if the canonical liflY is restricted to_
determined byp;=g;; &, thenY|L is equal to the lift(A7)
as is wanted. From E@A6) along with&'(s)=g'“p,(s), we  With & the tangent vector field to a congruence of geodesics.
observe that the curvex(s),p(s)] is a geodesic flow, an
integral curve ofXy [see Eq(27)]. 3. Levi-Civita connection of T*M

Now we assume thg Is a tangent vector field to a con- The Levi-Civita connectiolV is defined on the cotangent
gruence of geodesics M. According to Eq.(A5), we can

~ * . ~
define the horizontal lifi€" on T*M. With the restriction bun_dIeT M through the_Sasakl m_etrlg.A W? denote the
pi=0;;&/(x) imposed, the Hamiltonian vector fieldy be- Christoffel symbols for this connection By ;

comes equal to the horizontal [#'. Hence, a congruence of
geodesics itM is lifted to a family of geodesic flows ili* M

along with &"=Xy. _ _ _ - where Roman capital indices run from 1 ton2and d, are
We proceed to discuss lifts of geodesic deviations. Letne standard frame:

Y(s) be a vector field defined along the geodesd(s). We
define a vector fielK(s) along a geodesic floywx(s),p(s)] P

. ; 0 )
with pi(s):gijfl(s)yby ﬁi=§, ai_:ﬁ_p-’ 1=1,...m.
[

Vigdc= ['5cia,

X=YDi+g;j(VeY)'Di (A7) The Christoffel symbols are given, as usual, by
We note here that th&(s) is defined independently of the
choice of adapted frames. X(s) satisfies the lifted Jacobi
Eq. (32), then theY (s) should be a Jacobi field. Conversely,
for a given Jacobi fieldr (s) defined along a geodesks), - ~ o~ ~
we may form a lifted vector fieldX(s) according to Eq. where gag are (':omponents of; 9ae= g(,aA’ﬁB)' We de-
(A7), which is defined along a geodesic floR(s) note the coefficients of the connecti®hwith respect to the
=[x(s),p(s)] with pi(s)=g;;&(s). Then,X(s) solves Eq. adapted frame by'g_,

(32.

“ 1. “ “ N
FSCZE AP(9g9cp+ dcIps— IpTec).

Vo,0,=T4,D.,

2. Killing vector fields o o
) ) ] ) where Greek indices also run from 1 ton2 but indicating
We now wish to investigate the relation between the cayhat they are indices for the adapted frame.

nonical lift (A3) and the lift(A7), where& is viewed as the Let the functions(2 ;,* be defined by

tangent vector field to a congruence of geodesicMinro ’

this end, we first consider symmetry of our Hamiltonian sys- [Dg.D,]1=0Qp, D,.

tem with the Hamiltonian functiofk. We assume here that

for a vector fieldY on M the functionF=6(Y)=Y'p; isa  Then, the torsion-free condition f&f is put in the form
constant of motionXy(F)=—{K,F}=0, where{-,-} de-

notes Poisson bracket. Then one obtaipXy ,Xg] ’fgy_’f;ﬁ:gma.

= —Xik,;=0. This implies thafy = Xy satisfies the linear-

ized Eq.(32) along any geodesic flow. On the other hand, theA straightforward calculation yield8 z,“ as follows:
conditionXk(F)=0 holds, if and only ifY is a Killing vec- )

tor field, an infinitesimal isometry, i.e£yg=0, as is easily [D;,Dj]=p,RijDx, [D;,Djl=—-T}Dx,
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TABLE Il. Kuntzmann & Butcher method, order six. The upper-right block is the matjy (the left
column is the vectorly), and the lower raw is the vectoc].

| |5 5 2 5 |5
2 10 36 9 15 36 30
1 V15 2 5 |15
2 36 24 9 36 24
1 15 5 15 2 15
—t— —_—t — —t — =
2 10 36 30 15 36
5 4
18 9 18
[D7.D;]=T}Di, [D7.Dj]=0. Vy Xo=[XEDx5+T4 X8x3ID,,  (ALD)

We are to write ouf §, in terms ofg,,; andQ 4., where
9.5=9(D,,Dp), the components o with respect to the
adapted frame. The covariant derivative of the megrinust

vanish for all vector fieldX on T*M; V,g=0, so that one
has

Dﬁéyﬁ_ff;yasa_rfmaya:o-
Further calculation provides
Ds0ys5+ D855~ Ds0s,
= (5450 00+ (T~ T8990, + (15,715,000
:(fogy—ﬂgye)ae5+ Qﬂﬁeaey+ﬂyﬁeaeﬁl
which results in

a 1~a5 = = e
rﬁyzzg (Dg9,s+ D955~ Ds9g,)

1 [e3 [e3 [e3
+§(Ql37 +Q ﬁv+Q Vﬂ')’

where

0%, =00 550,

A straightforward calculation shows that the components

T'4., are given by
Fo_p pi__ Lo I .
}k: }k’ F}F_Elek/p/! Fljik:_ERk”/p/,

=i
Fj—k:O,

(A10)

Covariant derivatives of vector fields are then expressed, in

terms of these coefficients, as

where X{) and (X5) are components oK; and X, with
respect toD,, respectively. In particular, the covariant de-
rivative of X=X'D; + X' D7 with respect to the horizontal lift

&= ¢(s)D; along a geodesic flow as a horizontal lift of a
geodesic takes the form

i —_

(Vz X)i:—dx P E%I— 2RI p, X

& ds kj 2 Rk P/ '
(A12)

S i X i ekyi 1 S ek
(VaX)'=—g ~Tw&™X + SRy p£7X.
If X=2", these equations give rise to
AV‘gh’éh=0,

which implies that the horizontal liffx(s),p(s)] of a geo-
desicx(s) on M is also a geodesic of* M with respect to
the lifted metricg. We note here that the arc length parameter

o with respect tog reduces to the arc length paramedgif
the curve is horizontal.

APPENDIX B: SYMPLECTIC IMPLICIT RUNGE-KUTTA
METHOD
Suppose we are given a dynamical systenRin

dx

E(t)Zf(X,t). (B1)

Numerical integration of this equation is performed through
discretizing it with time sliceh. The s-stage Runge-Kutta
method for integration is given by

S
x'=x+h>, bk
i=1
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S
ki=f| x+h> ajk,t+ch|, i=1,...s
i=1

where &,t) goes to k’,t+h) after one step, and;;, b;,

PHYSICAL REVIEW E 64 066206
andc; are real constants witB;_,c;=1. Note that the sec-
ond of the above equations defines implicikly. The three-
stage Runge-Kutta method, namely the sixth-order Kuntz-
mann and Butcher method, is defined as in Table II.
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